• Title/Summary/Keyword: cost matrix

Search Result 648, Processing Time 0.024 seconds

Screening and Possibility of Semi-quantitative Analysis of Explosive Compounds in Soil Using EXPRAY$^{(R)}$ Explosives Field Detection Kit (화약물질 현장검출시약 EXPRAY$^{(R)}$를 이용한 토양내 화약물질 스크리닝 및 준정량화 가능성)

  • Bae, Bum-Han;Cho, Jung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • A quick and simple detection method of explosive compounds in environmental matrix (soil and water) can provide a screening step which reduces the number of unnecessary samples and the cost of expensive laboratory analysis at a site investigation. A commercially available EXPRAY$^{(R)}$Explosives Field Detection Kit (EXPRAY) was used to determine the minimum detection concentration and to test the possibility of semi-quantitative analysis of 14 explosive compounds using standard solutions. The results showed that EXPRAY could detect 5 explosive compounds, TNT, RDX, HMX, Tetryl, and TNB, out of 14 US EPA designated explosives. The minimum detection limit of the nitramine explosives was 14 ng/$^2$ for HMX and RDX. EXPRAY was more sensitive to nitroaromatics than the nitramines and the minimum detection limits per unit area (mm$^2$) for Tetryl, TNB, and TNT, were 3 ng, 3 ng, and 0.3 ng, respectively. The semi-quantification of 5 explosive compounds in an order ofmagnitude could be achieved by the intensity of developed color only when EXPRAY was applied on the standard solutions under controlled laboratory conditions. With contaminated soil samples, however, only the presence and type of explosive compounds was identified. Therefore, EXPRAY is an economic and sensitive method that can be used in a screening step for the identification of explosives in the field samples.

Topology Design Optimization and Experimental Validation of Heat Conduction Problems (열전도 문제에 관한 위상 최적설계의 실험적 검증)

  • Cha, Song-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • In this paper, we verify the optimal topology design for heat conduction problems in steady stated which is obtained numerically using the adjoint design sensitivity analysis(DSA) method. In adjoint variable method(AVM), the already factorized system matrix is utilized to obtain the adjoint solution so that its computation cost is trivial for the sensitivity. For the topology optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of the structure and the allowable volume, respectively. For the experimental validation of the optimal topology design, we compare the results with those that have identical volume but designed intuitively using a thermal imaging camera. To manufacture the optimal design, we apply a simple numerical method to convert it into point cloud data and perform CAD modeling using commercial reverse engineering software. Based on the CAD model, we manufacture the optimal topology design by CNC.

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.

Liquid Silicon Infiltrated SiCf/SiC Composites with Various Types of SiC Fiber (다양한 SiC 섬유를 적용한 실리콘 용융 침투 공정 SiCf/SiC 복합재료의 제조 및 특성 변화 연구)

  • Song, Jong Seob;Kim, Seyoung;Baik, Kyeong Ho;Woo, Sangkuk;Kim, Soo-hyun
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.77-83
    • /
    • 2017
  • Liquid silicon infiltration, which is one of the methods of producing fiber reinforced ceramic composites, has several advantages such as low fabrication cost and good shape formability. In order to confirm LSI process feasibility of SiC fiber, $SiC_f/SiC$ composites were fabricated using three types of SiC fibers (Tyranno SA, LoxM, Tyranno S) which have different crystallinity and oxygen content. Composites that were fabricated with LSI process were well densified by less than 2% of porosity, but showed an obvious difference in 3-point bending strength according to crystallinity and oxygen content. When composites in LSI process was exposed to a high temperature, crystallization and micro structural changes were occurred in amorphous SiOC phase in SiC fiber. Fiber shrinkage also observed during LSI process that caused from reaction in fiber and between fiber and matrix. These were confirmed with changes of process temperature by SEM, XRD and TEM analysis.

Generation of a monoclonal anti-human $\beta$2-adrenergic receptor antibody using GST-$\beta$-adrenergic receptor C-terminal fusion proteins expressed in E.Coli.

  • Kang, Suk-Jo;Shin, Chan-Young;Park, Kyu-Hwan;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.95-95
    • /
    • 1997
  • Among the various receptor molecules discovered so far the ${\beta}$2-adrenergic receptors have been regarded as excellent model systems for the so called 7 transmembrane helix receptor and have been the focus of extensive studies. For the analysis of receptor structure and function a monoclonal antibody plays a crucial role, thus providing useful tools for the study of receptor. However, because of the minute quantity of receptor molecules which could be obtained from natural sources, the generation of specific monoclonal antibody against receptor molecules from the purified receptors has been regarded as virtually impractical in consideration of cost and experimental times. The purpose of the present study was to generate and characterize a monoclonal antibody against human ${\beta}$2-adrenergic receptor. For the production of antibody, C-terminal regions of the human ${\beta}$2-adrenergic receptor was produced as a fusion protein with Glutathion S-transferase (GST) in E. Coli. The expression of the fusion protein was identified by SDS-PAGE and Western blot using monoclonal anti-GST antibody. The fusion protein was purified to an apparent homogeniety by affinity chromatography with Glutathion Sepharose CL-4B and used as an antigen for the immunization of BALB/C mice. The Production of monoclonal antibody was achieved by fusion of the immunized spleen cells and SP/2-0 myeloma cells. Positive hybridomas were screened by ELISA and were cloned by two consecutive rounds of limiting dilution. The monoclonal antibody produced in this study (mAb${\beta}$C02) was IgM type and purified by immunoaffinity chromatography using anti-mouse IgM agarose as an affinity matrix. MAb${\beta}$C02 showed strong and specific immunoreactivity against both the fusion protein and human ${\beta}$2-adrenergic receptor in ELISA and Western blot. The molecular weight of immunoreactive band was 64 kDa and exactly coincided with the previously reported molecular weight of ${\beta}$2-adrenergic recepters. The results of the present study suggest that mAb${\beta}$C02 may be used for the study of receptor function and regulation in normal or nonphysiological status.

  • PDF

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Inspection System using CIELAB Color Space for the PCB Ball Pad with OSP Surface Finish (OSP 표면처리된 PCB 볼 패드용 CIELAB 색좌표 기반 검사 시스템)

  • Lee, Han-Ju;Kim, Chang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • We demonstrated an inspection system for detecting discoloration of PCB Cu ball pad with an OSP surface finish. Though the OSP surface finish has many advantages such as eco-friendly and low cost, however, it often shows a discoloration phenomenon due to a heating process. In this study, the discoloration was analyzed with device-independent CIELAB color space. First of all, the PCB samples were inspected with standard lamps and CCD camera. The measured data was processed with Labview program for detecting discoloration of Cu ball pad. From the original PCB sample image, the localized Cu ball pad image was selected to reduce the image size by the binarization and edge detection processes and it was also converted to device-independent CIELAB color space using $3{\times}3$ conversion matrix. Both acquisition time and false acceptance rate were significantly reduced with this proposed inspection system. In addition, $L^*$ and $b^*$ values of CIELAB color space were suitable for inspection of discoloration of Cu ball pad.

A Path-Based Traffic Assignment Model for Integrated Mass Transit System (통합 대중교통망에서의 경로기반 통행배정 모형)

  • Shin, Seong-Il;Jung, Hee-Don;Lee, Chang-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.1-11
    • /
    • 2007
  • Seoul's transportation system was changed drastically starting the first of June in two thousand. This policy includes integrated distance-based fare system and public transportation card system called smart card. Especially, as public transportation card data contains individual travel, transfer and using modes information it is possible to catch the characteristics of path-based individuals and mass transit. Thus, public transportation card data can contribute to evaluate the mass transit service in integrated public transportation networks. In addition, public transportation card data are able to help to convert previous researches and analyses with link-based trip assignment models to path-based mass transit service analysis. In this study, an algorithm being suitable for path-based trip assignment models is suggested and proposed algorithm can also contribute to make full use of public transportation card data. For this, column generation algorithm hewn to draw the stable solution is adopted. This paper uses the methodology that is to take local approximate equilibrium from partial network and expand local approximate equilibrium to global equilibrium.

  • PDF

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

A case study on optimal location modeling of battery swapping & charging facility for the electric bus system (전기버스를 위한 배터리 자동 교환-충전인프라 배치 최적화 모형개발 및 적용 사례 분석)

  • Kim, Seung-Ji;Kim, Wonkyu;Kim, Byung Jong;Im, Hyun Seop
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.121-135
    • /
    • 2013
  • This paper propose an efficient algorithm for selecting electric bus charging facility location. In nature, the optimal charging facility location problem is similar to Set Covering Problem. Set Covering Problem is the problem of covering all the rows of an $m{\times}n$ matrix of ones and zeros by a subset of columns with a minimal cost. It has many practical applications of modeling of real world problems. The Set Covering Problem has been proven to be NP-Complete. In order to overcome the computational complexity involved in seeking optimal solutions, this paper present an enhanced greedy algorithm and simulated annealing algorithm. In this paper, we apply the developed algorithm to Seoul's public bus system.