• Title/Summary/Keyword: cost/duration evaluation

Search Result 71, Processing Time 0.027 seconds

Performance Evaluation of the Low-cost, High-precision RTK Device RTAP2U for GPS-based Precise Localization

  • Kim, Hye-In;Kim, Yeong-Guk;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • The need for precise location data is growing across numerous markets, and so is the number of affordable high-precision GPS receivers. In this paper, we validated the performance of RTAP2U, a low-cost high-precision RTK receiver that was recently released. Two positioning modes were tested: static and driving. The static test conducted Zero-Baseline Single-RTK and Network-RTK survey for 57 hours and 51 hours, respectively. For the driving test, Network-RTK survey was conducted using VRS services provided by NGII based on Trimble PIVOT and Geo++ GNSMART. The static test showed about 1 cm horizontal and vertical accuracies, which is very stable considering the test duration longer than 50 hours. The integer ambiguity FIX rate marked a solid 100%. The driving test result also reached a 100% FIX rate. Horizontal and vertical accuracies were better than 2 cm and 3 cm, respectively. Researchers can refer to this paper when considering affordable high-precision GPS receivers as an option.

Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation (각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법)

  • Kim, Hong-Sik;Moon, Seung-Pil;Choi, Jae-Seok;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.112-115
    • /
    • 2001
  • This paper illustrates a new nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed. In this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a test system.

  • PDF

Study on Project Management Method of Naval Ship Building in Monetary Fluctuations (금융환경 변동 하에서 실적가치 기법에 의한 함정건조사업 관리 방안 연구)

  • Kim, Hyung-Man;Seo, Guan-Hee;Kim, Soo-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.542-549
    • /
    • 2005
  • Naval ships are complex weapon systems which play the integrated performance by system integration of many kinds of weapon systems and their leading ships are usually not disposed after test and evaluation but militarised. Then, strict project management is required for naval ship building projects by identifying problems early and by taking prefer measures in time against unexpected situations encountered in the process of the projects. EVMS is a project management system which can manage the schedule and the budget of a project concurrently and estimate the project's time duration and the cost at project completion. In this paper, the applicability and usefulness of WMS is studied for a assumed navai ship building project, in the environment of monetary fluctuations such as price index, wage increase rate and exchange rate.

An Comparative Analysis of Alternatives at Implementing Next Generation System for the Financial Business (금융 차세대시스템 구축방식의 비교 분석)

  • Mun, Hui-Jin;Hong, Jeong-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.455-459
    • /
    • 2008
  • This study defines the Next Generation System(NGS) built by domestic financial businesses and classifies their architecture into two typical types according to the duration of the project and the relative cost of IT investment in the short term: the Big Bang approach and the Phase approach. Herein, we study the two approaches as alternatives in developing the Next Generation System, and derive the factors that are to be considered in the evaluation of the two alternatives for financial businesses. The set of standards for the choice between the two models are grouped into categories that constitute performance evaluation for IT - Cost, Performance and Risk. We drill down further into each category to second and third subordinate levels to derive detailed selection criteria. Based on the criteria drawn from the study, we conduct a survey with information system planners, IT managers and specialists at financial companies who are currently planning, developing or have completed a Next Generation System. Survey results are analyzed using the AHP methodology to compare and understand the different approach in the implementation of NGS for financial business.

  • PDF

Challenges to Prevent in Practice for Effective Cost and Time Control of Construction Projects

  • Olawale, Yakubu A.
    • Journal of Construction Engineering and Project Management
    • /
    • v.10 no.1
    • /
    • pp.16-32
    • /
    • 2020
  • Cost and time control of projects is important in preventing project failure. However, achieving effective cost and time control in practice is often challenging. The challenges of project cost and time control in practice are investigated by carrying out a questionnaire survey on the top 150 construction contractors in the UK followed by in-depth semi-structured interviews of practitioners from 15 construction companies in the country. Quantitative analysis reveals that design change is the most important factor inhibiting the ability of UK contractors from effectively controlling both the cost and time of construction projects. Four of the top five factors inhibiting effective cost control are also the top factors inhibiting effective time control albeit in a different order. These top factors-design changes, inaccurate evaluation of project time/duration, risk and uncertainty, non-performance of subcontractors and nominated suppliers were also found to be endogenous factors to the project. Additionally, qualitative analysis of the interviews reveals 16 key challenges to prevent for effective project cost and time control in practice. These are classified into four categorised based on where they stem from as follows; from the organisation (1. Lack of integration of cost and time during project control, 2. lack of management buy-in, 3. complicated project control systems and processes, 4. lack of a project control training regime); from the construction management/project management approach (5. Lapses in integration of interfaces, 6. project control not being implemented from the early stages of a project, 7. inefficient utilisation and control of labour, 8. limited time devoted to planning how a project will be controlled at the outset); from the client; (9. Excessive authorisation gates, 10. use of adversarial and non-collaborative forms of contracts, 11. communication problems within client set-up, 12. obstructive client representatives) and; from the project team (13. Lack of detailed/complete design, 14. lack of trust among the project partners, 15. limited time devoted to project control on site, 16. non-factual reporting). The study posits that knowledge of these project control inhibiting factors and challenges is the first step at ensuring they are avoided and enable the implementation of a more effective project cost and time control process in practice.

Study on the algorithm for the Reasonable Switch Automation Rate with Customer Interruption Cost and Reliability Evaluation (정전비용과 신뢰도 분석을 통한 분할 개폐기의 적정 자동화율 도출 알고리즘에 관한 연구)

  • Chai, Hui-Seok;Shin, Hee-Sang;Cho, Sung-Min;Moon, Jong-Fil;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.467-473
    • /
    • 2013
  • The addition of disconnect switches to a distribution feeder or the replacement of the manual switches with the automatic switches do, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder and reducing the outage section. However, the improvement of reliability in power distribution system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we suggest the algorithm for determining the reasonable switch automation rate in the power distribution system. We evaluate the customer interruption cost and reliability for several cases - these cases relate with the switch automation rate - in the domestic metropolitan power distribution system, estimate the effectiveness of changing the manual switch to automatic switch quantitatively. These results can help the determining on the disconnect switch's automation rate.

A study on construction simulation of road tunnel using Decision Aids for Tunneling (DAT) (터널의사결정체계 (DAT)를 이용한 도로터널의 시공 시뮬레이션 연구)

  • Min, Sangyoon;Kim, Taek Kon;Einstein, H.H.;Lee, Jun S.;Kim, Ho Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.161-174
    • /
    • 2003
  • Applicability of the Decision Aids for Tunneling (DAT) technique is investigated in this study to better understand the efficiency of the decision making process during tunnel construction. For this, a traffic tunnel under construction is adopted and information on the construction procedure, i.e., overall geology, unit cost and construction time for each excavation process, is provided periodically. Various scattergrams in which cost-time simulation results are plotted are obtained according to the simulation methods and final prediction on the construction time/cost is made. It is found that the uncertainty in the cost distribution is greater than the uncertainty in the time distribution for each cycle simulation and the uncertainties in time and cost for the one time simulations are comparable. Future work will be concentrated on the updating scheme using the face mapping data and various parametric studies will also be performed.

  • PDF

Risk Evaluation in FMEA when the Failure Severity Depends on the Detection Time (FMEA에서 고장 심각도의 탐지시간에 따른 위험성 평가)

  • Jang, Hyeon Ae;Yun, Won Young;Kwon, Hyuck Moo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.136-142
    • /
    • 2016
  • The FMEA is a widely used technique to pre-evaluate and avoid risks due to potential failures for developing an improved design. The conventional FMEA does not consider the possible time gap between occurrence and detection of failure cause. When a failure cause is detected and corrected before the failure itself occurs, there will be no other effect except the correction cost. But, if its cause is detected after the failure actually occurs, its effects will become more severe depending on the duration of the uncorrected failure. Taking this situation into account, a risk metric is developed as an alternative to the RPN of the conventional FMEA. The severity of a failure effect is first modeled as linear and quadratic severity functions of undetected failure time duration. Assuming exponential probability distribution for occurrence and detection time of failures and causes, the expected severity is derived for each failure cause. A new risk metric REM is defined as the product of a failure cause occurrence rate and the expected severity of its corresponding failure. A numerical example and some discussions are provided for illustration.

A Study on the Fuzzy ELDC of Composite Power System Based on Probabilistic and Fuzzy Set Theories

  • Park, Jaeseok;Kim, Hongsik;Seungpil Moon;Junmin Cha;Park, Daeseok;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.95-101
    • /
    • 2002
  • This paper illustrates a new fuzzy effective load model for probabilistic and fuzzy production cost simulation of the load point of the composite power system. A model for reliability evaluation of a transmission system using the fuzzy set theory is proposed for considering the flexibility or ambiguity of capacity limitation and overload of transmission lines, which are subjective matter characteristics. A conventional probabilistic approach was also used to model the uncertainties related to the objective matters for forced outage rates of generators and transmission lines in the new model. The methodology is formulated in order to consider the flexibility or ambiguity of load forecasting as well as capacity limitation and overload of transmission lines. It is expected that the Fuzzy CMELDC (CoMposite power system Effective Load Duration Curve) proposed in this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems in a competitive environment in the future. The characteristics of this new model are illustrated by some case studies of a very simple test system.

An automaticity indicator computation and a factory automation procedure (자동화 지표 계산 및 공장자동화 순서 결정을 위한 방법)

  • Cho, Hyun-Bo;Jeong, Ki-Yong;Lee, In-Bom;Joo, Jae-Koo;Lee, Joo-Kang;Jeon, Jong-Hag
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.209-222
    • /
    • 1997
  • The paper provides a methodology to obtain the automaticity indicator of a factory and the sequence of enabling technologies of factory automation. The automaticity indicator is the measure of the current automation status of a factory and can be used as a crucial criteria for the future automation schedule and investment. Although most industries have their own computation methods which usually consider the number of workers in the shop floor, this research covers five evaluation items of automation, such as, production facility, material transfer system, inspection and test system, information system, and flexibility. The detailed evaluation models are developed for each item. Automation sequencing prioritizes the enabling technologies of factory automation on the basis of several criteria which consist of two phases. The first phase includes the automation indicator and the second phase includes six sub-criteria such as production rate, quality, number of workers, capital investment, development duration, development difficulty. For this evaluation, AHP(Analytical Hierarchy Process) is introduced to prevent the decision maker's subject intention. As results of the automaticity indicator and automation sequence, the manager can save time and cost in building constructive and transparent automation plans.

  • PDF