• Title/Summary/Keyword: corrosion-resistance

Search Result 2,706, Processing Time 0.027 seconds

Electrochemical Frequency Modulation: Solution Resistance and Double Layer Capacitance Considerations

  • Lalvani, Shashi;Ullah, Sifat;Kerr, Lei
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.231-241
    • /
    • 2021
  • The objective of this study was to evaluate total current under steady-state conditions for a material undergoing corrosion using the electrochemical frequency modulation (EFM) technique, taking into account the presence of solution resistance and double layer capacitance. The analysis involving linearization of the Tafel curve allowed for the estimation of corrosion parameters. Results showed that the output signal was dependent on fundamental frequencies and their multiples. In addition, the output signal almost manifested itself at frequencies that were sums of fundamental frequencies of the applied sinusoidal signal. The harmonics calculated showed a significant shift from the principal frequency of input signals. The investigation involved the influence of corrosion current and anode-to-cathode Tafel slope ratio on faradaic and non-faradaic currents (including the average and RMS). The model presented showed both qualitative and quantitative improvements over the previously developed EFM technique that ignored the influence of solution resistance and the double layer capacitance while assuming the applied DC potential corresponded to the corrosion potential of the corroding material.

Study on the Characteristics of the Corrosion Fatigue Crack Propagation of Al-Alloy used for the Shipbuilding (선박용 알루미늄 합금재의 부식피로구열 진전특성에 관한 연구)

  • Im, U-Jo;Lee, Jong-Rak;Lee, Jin-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.2
    • /
    • pp.94-100
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuilding industries such as marine structures, ship, and chemical plants, there occurs much interest in the study of corrosion fatigue characteristics was closed up an important role in mechanical design. In this study, the 5086 Al-Alloy was tested by used of a rotary bending fatigue tester and was investigated under the environments of various specific resistance and air. The specific resistance, as a corrosion environment, was changed 15, 20, 25 and 5000$\Omega$.cm. The corrosion fatigue crack initiation sensitivity was quantitatively inspected for 5086 Al-Alloy in the various specific resistance. The experimental constants of Paris rule were examined in the various specific resistances, and the influences of load and corrosion with affect the crack growth rate were compared with. Main results obtained are as follows: (1) Number of stress cycles to corrosion fatigue crack initiation delaies and corrosion fatigue crack initiation sensitivity decreases with the increasing for the specific resistance. (2) The experimental constant m of Paris rule decreases with the decreasing for specific resistance. Hence the effect of corrosion is more susceptible than that of stress intensity factor. (3) The corrosion fatigue crack of 5086 Aluminium Alloy appears intergranular fracture. (4) Corrosion sensitivity is decreased with the increasing stress intensity factor and is nearly uniform when stress intensity factor is over 40kg.mm super(-3/2)

  • PDF

Corrosion Behavior of TiN Ion Plated Steel Plate(III)-Effects of Ni and Ti interlayer thickness- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(III)-Ni 및 Ti 하지코팅두께의 영향-)

  • 한전건;연윤모
    • Journal of Surface Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.55-62
    • /
    • 1993
  • The effect of interlayer coating thickness of Ni and Ti on corrosion behavior was studied for TiN ion plat-ed steel plate. Interlayer coating was carried out in a single and bi-layer to a various thickness combination prior to final TiN coating. Corrosion behavior was evaluated by anodic polarization test in 1N H2SO4 as well as salt spray test. Ni interlayer coating was effectived in reducing corrosion current density of active region and Ti interlayer coating over Ni coating reduced the anodic corrosion current density by an order of 4 with increasing the thickness of Ti up to$ 3\mu\textrm{m}$. The improvement of corrosion resistance by Ni/Ti interlayer coating was attributed to the effective prevention of penetration of active corrosion agent resulting from the inherent corrosion resistance of Ni and Ti. Putting corrosion behavior was observed from salt spray test result for all specimens and corrosion resistance at salt atmosphere was enhanced with increasing Ni and Ti thickness, Cor-lay TiN coating was spalled out by the generation of corrosion products.

  • PDF

Effects of pH and Chloride Concentration on Corrosion Behavior of Duplex Stainless Steel and Titanium Alloys Ti 6Al 2Nb 1Ta 1Mo at Elevated Temperature for Pump Impeller Applications

  • Aymen A., Ahmed;Ammar Yaseen, Burjes;Ammar Yaseen, Burjes
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.454-465
    • /
    • 2022
  • The objective of this study was to determine effects of temperatures and pH of sodium chloride solution with MgCl2 ions on corrosion resistance of duplex stainless-steel X2CrNiMoN22-5-3 (DSS) and Ti 6Al 2Nb1Ta1Mo (Ti). Effects of sodium chloride concentration on corrosion resistance were also studied. Corrosion behavior and pitting morphology of duplex stainless steel (DSS) and Ti alloys were evaluated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). It was found that a decrease in pH significantly reduced the corrosion resistance of both alloys. Changes in chloride concentration and temperature had more substantial impact on corrosion behavior of DSS than on Ti alloys. Pitting corrosion was formed on DSS samples under all conditions, whereas crevice corrosion was developed on Ti samples with the presence of magnesium chloride at 90 ℃. In conclusion, magnesium chloride ions in an exceedingly strong acidity solution appear to interact with re-passivation process at the surface of these alloys and influence the resulting surface topography.

Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy (Cu-7Al-2.5Si 합금의 기계적 및 내식특성에 미치는 열처리 효과)

  • Lee, Syung-Yul;Won, Jong-Pil;Park, Dong-Hyun;Moon, Kyung-Man;Lee, Myeong-Hoon;Jeong, Jin-A;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.28-35
    • /
    • 2014
  • Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of $500^{\circ}C$ was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The ${\alpha}$, ${\beta}^{\prime}$ and ${\gamma}_2$ phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, ${\beta}^{\prime}$ and ${\gamma}_2$ phases decreased gradually with increasing the holding time at a constant temperature of $500^{\circ}C$. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that ${\gamma}_2$ phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the ${\gamma}_2$ phase with heat treatment. Consequently, it is suggested that the corrosion resistance of Cu-7Al-2.5Si alloy can be improved with the heat treatment as a holding time for 48 hrs at $500^{\circ}C$.

Effect of Annealing Heat Treatment to Characteristics of AlDC8 (Al-Si-Cu) Alloy

  • Moon, Kyung Man;Lee, Sung-Yul;Lee, Myeong Hoon;Baek, Tae-Sil;Jeong, Jae-Hyun
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.296-300
    • /
    • 2015
  • ALDC8 (Al-Si-Cu) alloy has been often corroded with pattern of intergranular corrosion in corrosive environments. Thus, in order to improve its corrosion resistance, the effect of annealing heat treatment to corrosion resistance and hardness was investigated with parameters of heating temperatures such as $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ and $500^{\circ}C$ for 1hr. The hardness was varied with annealing temperature and slightly decreased with annealing heat treatment. However, the relation between annealing temperature and hardness agreed not well each other. Corrosion potential was shifted to noble direction and corrosion current density was also decreased with increasing annealing temperature. Moreover, both AC impedance at 10 mHz and polarization resistance on the cyclic voltammogram curve were also increased with increasing annealing temperature. Furthermore, intergranular corrosion was somewhat observed in non heat treatment as well as annealing temperatures at $100^{\circ}C$, $200^{\circ}C$ and $300^{\circ}C$, while, intergranular corrosion was not nearly observed at annealing temperature of $400^{\circ}C$, $500^{\circ}C$. Consequently, it is considered that the annealing heat treatment of ALDC8 alloy may be an available method not only to inhibit its intergranular corrosion but also to improve its corrosion resistance.

The characteristics of compressive strength resistance of concrete combined with corrosion inhibitors and mineral admixtures under simulated tidal condition (인공 해수 간헐 조건에서의 방청제 및 혼화재를 사용한 콘크리트 압축강도 및 저항의 특성)

  • 이용은;장태순;양우석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.641-646
    • /
    • 1998
  • The structures exposed to marine environment do not show long-term durability due to corrosion of steel and deterioration of concrete by the attack of various salts dissolved in sea water. In this study, Partial substitution of cement with fly ash(20%) or blast furnace slag(40%) was made together with the addition of 4 different corrosion-inhibitors, as a protective measure of concrete structures against chemical attack of salts. Combined effects of mineral and corrosion-inhibiting admixtures were tested by measuring the resistance and compressive strength of concretes under the simulated tidal condition, which consists of alternating 12 hour periods of immersion in artificial sea water and drying in air. Both the strength and concrete resistance were found to decrease in following order, regardless of the corrosion inhibitors the concretes with blast furnace slag, those with fly ash and those without any mineral admixtures. The interrelation between compressive strength of concrete and resistance was investigated.

  • PDF

Effect of Pretreatments on Graphene Coated Bipolar Plate of PEMFC on Electrochemical (전처리가 그래핀을 코팅한 고체고분자 연료전지 분리판의 전기화학적 특성에 미치는 영향)

  • Cha, Seong-Yun;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.224-232
    • /
    • 2014
  • Effect of pretreatments on the graphene coated bipolar plate of proton exchange membrane fuel cell(PEMFC) was investigated in simulated environments for PEMFC by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the graphene coated bipolar plate and the gas diffusion layer(GDL) was measured. The value of ICR decreased with an increase in compaction stress($20N/cm^2{\sim}220N/cm^2$). ICR of graphene coated bipolar plate was higher than that of bare 316L stainless steel. However, Potentiodynamic measurement results showed that the corrosion resistance of graphene coated bipolar plate was higher than that of bare 316L stainless steel. $H_2SO_4$ acid pretreatment was the most effective among various pretreatments. The lowest ICR and the corrosion current density were obtained when using $H_2SO_4$ solution pretreatment.

Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods (하이드라진으로 환원시킨 그래핀을 코팅한 오스테나이트와 마르텐사이트 스테인리스 강 고체고분자형 연료전지 금속 분리판의 전기화학적 특성 평가)

  • Cha, Seong-Yun;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.92-107
    • /
    • 2016
  • Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.

Researches in Corrosion Resistance of Friction Stir Welded Aluminum alloys (마찰교반접합된 알루미늄 합금의 내식 특성에 관한 연구 동향)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloys have been considered for substantial use in these industries. This ensues from their attractive strength to weight ratio, superb formability, apposite weldability and acceptable corrosion resistance. Depending on the specific application, corrosion behavior is a significant factor of a welded joint. In this study, recent researches in the view of corrosion resistance of friction stir welded aluminum alloys are briefly reviewed.