• Title/Summary/Keyword: corrosion potential ($E_{corr}$)

Search Result 15, Processing Time 0.021 seconds

Potential Difference of Cyclic Polarization Curve of an Aircraft Al Alloy: ∆E (Esec,corr - Ecorr)

  • Sun, Qingqing;Chen, Kanghua
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2020
  • This paper presents a hypothesis and its experimental validation that ∆E (Esec,corr - Ecorr) of cyclic polarization curve of an Al-Zn-Mg-Cu alloy decreases firstly and then increases with the increasing of corrosion rate or corroded fraction Fcorr of alloy surface. The minimum value of ∆E is obtained when Fcorr ≈ 50%. In addition, a proportional relationship between ∆E and |50% - Fcorr| was found. This non-monotonic relation between ∆E and extent of localized corrosion indicates that additional attention should be paid on using ∆E to assess localized corrosion behaviour of Al-Zn-Mg-Cu alloys.

Corrosion resistance assessment of nickel-titanium endodontic files with and without heat treatment

  • Tatiana Dias Costa;Elison da Fonseca e Silva;Paula Liparini Caetano ;Marcio Jose da Silva Campos ;Leandro Marques Resende ;Andre Guimaraes Machado;Antonio Marcio Resende do, Carmo
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.6.1-6.10
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the corrosion resistance of heat-treated (Reciproc and WaveOne) and non-heat-treated (ProTaper and Mtwo) superelastic nickel-titanium endodontic files when immersed in a 5.25% sodium hypochlorite solution. Materials and Methods: Anodic polarization curves were obtained with potential sweeps that began at the open circuit potential or corrosion potential (Ecorr). The pitting potential (Epit) was identified on the anodic polarization curve as the potential at which a sudden increase in current was observed. The micromorphology of the 28 tested files was analyzed before and after the electrochemical assay using scanning electron microscope (SEM). The data were analyzed using 1-way analysis of variance with the post hoc Bonferroni test (for Ecorr) and the Student t-test for independent samples (for Epit). Results: The mean Ecorr values were 0.506 V for ProTaper, 0.348 V for Mtwo, 0.542 V for Reciproc, and 0.321 V for WaveOne files. Only WaveOne and Protaper files exhibited pitting corrosion, with Epit values of 0.879 V and 0.904 V, respectively. On the SEM images of the ProTaper and WaveOne files, cavities suggestive of pitting corrosion were detected. Conclusions: Signs of corrosion were observed in both heat-treated and non-heat-treated files. Of the evaluated files, WaveOne (a heat-treated file) and ProTaper (a non-heat-treated file) exhibited the lowest corrosion resistance.

An Experimental Study on Relationship Between Half-Cell Potential and Corrosion Current Density of Chloride-Induced Corroded Steel in Concrete (염해에 따라 콘크리트 속에서 부식된 철근의 반전지전위와 부식전류밀도의 상관관계에 관한 실험적 연구)

  • Jo, Sang-Hyeon;Kim, Dong-Won;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.1-13
    • /
    • 2022
  • This study aims to investigate the feasibility of the half-cell potential (HCP) measurements on the concrete surface for evaluation of corrosion rate (or corrosion levels) of reinforcing steel in concrete. A series of experimental study is performed to measure HCP (or corrosion potential, Ecorr) and corrosion current density (icorr) of reinforcing steel in concrete cube specimens, with a side length of 200 mm. Various corrosion levels in a range of 0% to 20% of the test specimens are accelerated by impressing current to the reinforcing steel in concrete immersed in 3.0 % NaCl solution. HCP is measured in accordance with ASTM C876-15, and corrosion current density is determined by using the Stern-Geary equation and measured polarization resistance measured by electrochemical impedance spectroscopy (EIS). As a result, a numerical formula that relates HCP and icorr in the test specimen is established by a regression analysis of the measured data in this study. It is observed that HCP is linearly correlated with log(icorr) with a R2 greater than 0.87, which is less affected by the experimental variables such as concrete mixture proportion, diameter of reinforcing steel and the amount of applied current in this study. These results exhibit that HCP measurements could be effective for evaluation of corrosion rate (or corrosion levels) of reinforcing steel in concrete in the case of exposed to a certain consistent environment.

Polarization Characteristics of Thermal Sprayed Coating Layer (용사코팅층의 분극특성)

  • Ahn, S.H.;Kim, S.J.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.38-43
    • /
    • 2004
  • Thermal spraying onto the metal substrate has been widely used as a technique of the surface treatment in the various industrial field. A wide range of thermal spray technologies exist and all rely on the fundamental process of fusing a metal feedstock, atomizing it and transporting it to the surface of a substrate. Specially, these methods have been taken into account as the protection method against the corrosion. In this study, the polarization characteristics were carried out on the thermal sprayed coating layer immersed in various pH of diluted aqueous solutions at $25^{\circ}C$. Aluminum, Zinc, Ni-base alloy, alumina and polyethylene powder were used with sprayed coating materials. From the polarization curves, the electrochemical corrosion potential($E_{corr}$) and the corrosion current density($I_{corr}$) were investigated.

  • PDF

Corrosion characterization of Fe-aluminide alloys with various sulphuric acid solution ($H_2SO_4$ 수용액 변화에 따른 철 알루미나이드 합금의 부식특성)

  • Lee, B.W.;Choi, H.L.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • Corrosion characterization of Fe-XAl-0.3Y(X=5, 10, 14 wt%) alloys in $0.1{\sim}1N$ sulphuric acid at room temperature was studied using potentiodynamic techniques. The morphology and components of corrosion products on surface of Fe-aluminide alloys were investigated using SEM/EDX, XRD. The potentiodynamic polarization curve of alloys exhibited typical active, passive, transpassive behaviour. Corrosion potential($E_{corr}$) and corrosion current density($I_{corr}$) values of Fe-XAl-0.3Y alloys followed linear rate law. $E_{corr}$ of 10Al alloy and 14Al alloy was ten times lower than 5Al alloy. Icorr of 14Al alloy was five times lower than 5Al alloy. The passive film on the surface of Fe-5Al-0.3Y alloy was formed iron oxide. Fe-10Al-0.3Y and Fe-14Al-0.3Y alloys passive films were aluminium oxide. especially, Fe-14Al-0.3Y alloy showed good corrosion resistance in $0.1{\sim}1N$ sulphuric acid. This is attributed to the forming of protective $Al_2O_3$ oxide on the surface of Fe-14Al-0.3Y alloy.

  • PDF

Corrosion Characteristics of Gold-Coated Silver Wire for Semiconductor Packaging (반도체 패키징용 금-코팅된 은 와이어의 부식특성)

  • Hong, Won Sik;Kim, Mi-Song;Kim, Sang Yeop;Jeon, Sung Min;Moon, Jeong Tak;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.289-294
    • /
    • 2021
  • In this study, after measuring polarization characteristics of 97.3 wt% Ag, Au-Coated 97.3 wt% Ag (ACA) and 100 wt% Au wires in 1 wt% H2SO4 and 1 wt% HCl electrolytes at 25 ℃, corrosion rate and corrosion characteristics were comparatively analyzed. Comparing corrosion potential (ECORR) values in sulfuric acid solution, ACA wire had more than six times higher ECORR value than Au wire. Thus, it seems possible to use a broad applied voltage range of bonding wire for semiconductor packaging which ACA wire could be substituted for the Au wire. However, since the ECORR value of ACA wire was three times lower than that of the Au wire in a hydrochloric acid solution, it was judged that the use range of the applied voltage and current of the bonding wire should be considered. In hydrochloric acid solution, 97.3 wt% Ag wire showed the highest corrosion rate, while ACA and Au showed similar corrosion rates. Additionally, in the case of sulfuric acid solution, all three types showed lower corrosion rates than those under the hydrochloric acid solution environment. The corrosion rate was higher in the order of 97.3 wt% Ag > ACA > 100 wt% Au wires.

Micro-scale Observation of Corrosion of Hot-Dip Aluminized 11% Cr Stainless Steel

  • Cho, Min-Seung;Park, Choong-Nyeon;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.73-77
    • /
    • 2019
  • Hot-dip aluminized coating has been widely used to protect steel substrate against corrosion. In this study, the corrosion behavior of hot-dip aluminized type 409L (11% Cr) stainless steel (SS) was investigated using macro- and micro-scale polarization tests. An Al-Fe-Si alloy layer that was formed due to inter-diffusion of alloying elements between Al coating and SS substrate was observed between Al coating and 409L SS substrate. In both macro- and micro-scale polarization tests, the corrosion potential ($E_{corr}$) of the 409L SS substrate was much nobler than that of the Al coating and alloy layer. $E_{corr}$ of the alloy layer was between that of Al coating and 409L SS substrate. This indicates that the alloy layer can act as a buffer between the more active Al coating and the nobler SS substrate for pit growth in aluminized SS. The presence of the alloy layer appears to be helpful in hindering pitting corrosion of aluminized SS.

THE SURFACE CHARACTERISTICS OF NITROGEN ION IMPLANTED IRON ALUMINIDES

  • Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.393-400
    • /
    • 1999
  • The surface characteristics of nitrogen ion implanted iron aluminides were investigated using various electrochemical methods in $H_2$$SO_4$+KSCN and HCl solutions. Nitrogen ion implantation was performed with doses of $3.0$\times$10^{17}$ /ions/$\textrm{cm}^2$ at an energy of 150keV. Nitrogen ion implanted iron aluminides increased the corrosion potential and significantly decreased grain boundary activation, the active current density, and passive current density. Nitrogen implanted iron aluminides with Mo increased the corrosion, pitting potential, repassivation potential and │$E_{pit}$-$E_{corr}$│ value. Whereas, implanted iron aluminides containing boron reduced the pitting and repassivation potential in comparison with nitrogen implanted iron aluminides with Cr and Mo.o.

  • PDF

A Study on the Anti-corrosion Properties of Organic and Inorganic Inhibitor by Electrochemical Evaluation Method in Saturated Aqueous Solution of Calcium Hydroxide (포화 수산화칼슘 수용액 내에서의 무기계 및 유기계 방청제의 전기화학적 방식 특성평가)

  • Kim, Soo-Young;Ryu, Hwa-Sung;Kim, Sung-Kil;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.66-74
    • /
    • 2013
  • In this study, corrosion potential ($E_{corr}$), corrosion rate, and polarization resistance were measured aimed at inorganic inhibitors (passive film type) and organic inhibitors (absorption type). The experiment was conducted using potentiostat for the variable molar ratio and chloride ion concentration of the components of inhibitors in an aqueous solution of saturated calcium hydroxide targeting corrosion. As a result, it was possible to ensure an anticorrosive performance of at least a 1.2 molar ratio of inorganic inhibitors. Also, the organic inhibitors ensured the prevention of the anticorrosive performance of at least about a 0.3 molar ratio. It also showed the tendency that between polarization resistance and corrosion rate, Ecorr and corrosion rate is inversely proportional to the linear. Conversely, the tendency between polarization resistance and Ecorr is proportional to the linear. Also, a distinct difference in organic and inorganic inhibitors' relationship to Ecorr, corrosion rate, and polarization resistance was not shown.

Assessment of In-Situ Solid-State Reference Electrode for Monitoring Corrosion of Steel Rebar in Simulated Concrete Environments (모의 콘크리트 환경에서 강철 철근의 부식을 모니터링하기 위한 현장 고체 기준 전극 평가)

  • Karthick, Subbiah;Park, TaeJoon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.281-282
    • /
    • 2023
  • The solid-state reference electrodes made of polyaniline-coated MnO2 (SSRE-PAM) and their electrochemical characteristics were studied in simulated concrete pore solutions (SCPS) containing 0 and 3.5% NaCl. Saturated calomel electrodes (SCE) have been used to conduct electrochemical studies on the stability behavior of SSRE-PAM. Open circuit potential (OCP) and potentiodynamic polarization techniques were used to assess the corrosion performance of steel rebar exposed in SCPS with 0 and 3.5% NaCl using SSRE-PAM. The results demonstrate that the SSRE-PAM was capable of identifying steel rebar in a concrete environment that was either passive or active. Potentiodynamic polarization parameters such as Ecorr and Icorr for steel rebar in SCPS containing 0 and 3.5%)NaCl are greater than that of the passive condition (0% NaCl). All the studies validate the importance of using SSRE-PAM for corrosion monitoring applications in concrete structures.

  • PDF