• Title/Summary/Keyword: corrosion of rebar

Search Result 243, Processing Time 0.026 seconds

Effect of Bacteria on the Rebar Corrosion (철근 부식에 자기치유 박테리아가 미치는 영향)

  • Jang, Indong;Park, Jiyoon;Son, Dasom;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.221-222
    • /
    • 2021
  • Bacterial self-healing concrete is known to improve the durability of concrete by preventing the propagation of microcracks. In the literature, bacteria prevent the corrosion of rebar by inhibiting water transfer through crack, but also can promote the corrosion by acting as an ion acceptor in the rust generation mechanism. Therefore in this study, the electrochemical analysis of bio-filmed rebar was conducted to explore the effects of the self-healing bacteria on the bare rebar without cement composite. As a result of the experiment contradicting trends for Ecorr and Icorr occurred and additional experiment will be conducted in various environments to collect data on the mechanism of corrosion of rebar by bacteria.

  • PDF

Improving the concrete quality and controlling corrosion of rebar embedded in concrete via the synthesis of titanium oxide and silica nanoparticles

  • Jundong Wu;Yan Cui
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Concrete is one of the most widely used structure materials. Concrete is like the motor of the construction industry. The remarkable feature of this Concrete is its cheapness and low energy consumption. Concrete alone does not show resistance against any force but only against compressive forces. Therefore, steel rebar product is used as a reinforcement and increase the strength of Concrete. It can be done by putting rebar in Concrete in different ways. Rebar rusting is one of the crucial symptoms that cause swift destruction in reinforced structures-factors such as moisture in concrete increase the steel corrosion rate. In most cases, it is difficult to compensate for the damage caused by the corrosion of base metals, so preventing corrosion will be much more cost-effective. Coatings made with nanotechnology can protect Concrete against external degradation factors to prevent water and humidity from penetrating the Concrete and prevent rusting and corrosion of the rebar inside. It prevents water penetration and contamination into the Concrete and increases the Concrete's quality and structural efficiency. In this research, silica and titanium dioxide nanoparticle coatings have been used due to their suitable electrical and thermal properties, resistance to oxidation, corrosion, and wear to prevent the corrosion of rebars in Concrete. The results of this method show that these nanoparticles significantly improve the corrosion resistance of rebars.

Effect of the Rebar Corrosion Rate on Bond Strength in Reinforced Concrete - Factors caused by compressive strength and embedded rebar condition - (철근의 부식도가 콘크리트의 부착강도에 미치는 영향 - 콘크리트 강도와 철근매입 조건을 인자로 하여 -)

  • 김현욱;지남용;윤상천
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.537-542
    • /
    • 2002
  • The social trouble to the durability of concrete rises recently because the embedded rebar corrosion influences concrete structures to deteriorate structural capacity. And also, the rebar corrosion causes crack of concrete, decrease of steel section and separation of covering concrete. In the result, the bond strength of concrete and embedded rebar decreases, which causes deterioration of the structure behavior in reinforced concrete. In this study, the relation of bond strength and bond-slip was understood to evaluate capacity deterioration of reinforced concrete, and experiments were carried out by compressive strength and embedded rebar condition in the rebar corrosion rate.

  • PDF

Mitigation of Steel Rebar Corrosion Embedded in Mortar using Ammonium Phosphate Monobasic as Hreen Inhibitor (제 1 인산 암모늄 사용량에 따른 시멘트 모르타르의 철근방청성능 평가에 관한 실험적 연구)

  • Tran, Duc Thanh;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.112-113
    • /
    • 2021
  • Phosphate based inhibitor is playing a decisive role in inhibiting the corrosion of steel rebar in chloride condition. We have used different amount of ammonium phosphate monobasic (APMB) as corrosion inhibitor in mortar with different amount of chloride ions. The compressive strength, flexural strength, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization resistance (PPR), scanning electron microscopy (SEM) and Raman spectroscopy were performed to access the effect of inhibitor on corrosion resistance. As the amount of inhibitor is increased, the compressive strength increased. The electrochemical results show that as the amount of inhibitor and chloride ions are increased, the total impedance and corrosion resistance of steel rebar increased attributed to the formation of the stable oxide films onto the steel rebar surface. It is suggested that APMB can work in high concentration of chloride ions present in concrete where phosphate ion helps in formation of stable and protective phosphate based oxide film.

  • PDF

Bond deterioration of corroded steel in two different concrete mixes

  • Zhou, Haijun;Liang, Xuebing;Wang, Zeqiang;Zhang, Xiaolin;Xing, Feng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.725-734
    • /
    • 2017
  • This paper investigated the effects of rebar corrosion on bond performance between rebar and two different concrete mixes (compressive strengths of 20.7 MPa and 44.4 MPa). The specimen was designed as a rebar centrally embedded in a 200 mm concrete cube, with two stirrups around the rebar to supply confinement. An electrochemical accelerated corrosion technique was applied to corrode the rebar. 120 specimens of two different concrete mixes with various reinforcing steel corrosion levels were manufactured. The corrosion crack opening width and length were recorded in detail during and after the corrosion process. Three different loading schemes: monotonic pull-out load, 10 cycles of constant slip loading followed by pull-out and varied slip loading followed by pull-out, were carried out on the specimens. The effects of rebar corrosion with two different concrete mixes on corrosion crack opening, bond strength and corresponding slip value, initial slope of bond-slip curve, residual bond stress, mechanical interaction stress, and energy dissipation, were discussed in detail. The mean value and coefficient of variation of these parameters were also derived. It was found that the coefficient of variation of the parameters of the corroded specimens was larger than those with intact rebar. There is also obvious difference in the two different concrete mixes for the effects of rebar corrosion on bond-slip parameters.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

The Development of Repair System for RC Members with Damaged by Rebar Corrosion Using Inhibitor with High Nitrite Content (아초산계 방청제 도포에 의한 철근 부식 보수 시스템 공법 개발)

  • 이한승;나정일;박순만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.359-364
    • /
    • 2001
  • The purpose of this study is to develop the repair system for RC members with damaged by rebar corrosion using new corrosion inhibitor which was high nitrite content. In the experiments, the acceleration corrosion test of rebar was conducted using the specimen which was applied by various repair system. As a result, it was confirmed that the new repair system without concrete patching had high anti-corrosion property compared with other repair systems and was very effective as a spray type corrosion inhibitor in concrete containing chloride (0.1% of NaCl).

  • PDF

Study on Evaluation of Strength Properties of RC Beams Damaged by Corrosion of Tension Main Rebar (인장주근이 부식한 RC보의 내력성능 평가에 관한 연구)

  • 이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.665-670
    • /
    • 1998
  • This study was carried out to investigate quantitatively the relationship between the degree of rebar corrosion and the strength of reinforced concrete beams. After producing equations for the relationship between both the tensile properties of rebars and bond properties and the corrosion percentage of rebars. Finite element analysis and bending tests were conducted for RC beams damaged by corrosion of tension main rebar. As a result, it was made that the strength of RC beams damged by corrosion could be practically simulated by FEM using experimentally determined material representing the bond properties and the mechanical properties of corroded rebars.

  • PDF

Corrosion Inhibition Properties of Conifer Cone (Pinus resinosa) Extract in Chloride Contaminated Concrete Pore Solutions (염화물에 노출된 콘크리트 기공 내에 솔방울 추출물의 부식 방청 특성)

  • Karthick, Subbiah;Park, TaeJoon;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.63-64
    • /
    • 2021
  • The corrosion inhibition properties of conifer cone (Pinus resinosa) extract were studied in synthetic concrete pore solutions (SCPS) with and without chloride environments by electrochemical methods. The electrochemical impedance spectroscopy (EIS) revealed that the conifer cone (CC) extract showed promising inhibition behavior by diminishing the corrosion rate of steel rebar both solutions i.e. with and without chloride. The extract of conifer cone hinders the corrosion reaction between steel rebar and aggressive ions. Further, it can be verified that the up to 1000mg.L-1 of CC extract can able to reduce the corrosion rate of steel rebar in chloride contaminated concrete.

  • PDF

Effect of Carbonation Threshold Depth on the Initiation Time of Corrosion at the Concrete Durability Design (콘크리트의 내구성 설계시 탄산화 임계깊이가 철근부식 개시시기에 미치는 영향에 관한 연구)

  • Yang, Jae-Won;Lee, Sang-Hyun;Song, Hun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.229-230
    • /
    • 2010
  • The Carbonation, one of the main deterioration factors of concrete, reduces capacity of members with providing rebar corrosion environment. Consequently it suggested standards of all countries of world, carbonation depth prediction equation of respective researchers and time to rebar corrosion initiation. As a result of carbonation depth prediction equation calculation, difference of time to rebar corrosion initiation is 149 years and difference of carbonation depth prediction equation is 162 years when water cement ratio is 50%. So a study on rebar corrosion with carbonation depth will need existing reliable data and verifications by experiment.

  • PDF