• Title/Summary/Keyword: corrosion of rebar

Search Result 243, Processing Time 0.022 seconds

Virtual Reality Presentation for Nondestructive Evaluation of Rebar Corrosion in Concrete based on Inverse BEM

  • Kyung, Je-Woon;Yokota, Masaru;Leelalerkiet, V.;Ohtsu, Masayasu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

A Study on the Estimation of the Coefficient of Electrolytic Corrosion according to Concrete Compressive Strength (콘크리트 강도에 따른 철근의 전식계수 산정에 관한 연구)

  • Kang, Taek-Sun;Jee, Namyong;Yoon, Sang-Chun;Kim, Jae-Hun;Kim, Dong-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.834-837
    • /
    • 2004
  • In this study, the electric accelerated reinforcing bar corrosion test was carried out to estimate the coefficient of electrolytic corrosion based on the concept of Faraday's law according to rebar corrosion rate and concrete compressive strength which had an effect on the actual corrosion mass loss. The results of this paper allow the prediction of corrosion amount in the electric accelerated reinforcing bar corrosion test method.

  • PDF

Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography (열유도 장치와 적외선 열화상을 이용한 철근부식탐지 비파괴 평가기법)

  • Kwon, Seung Jun;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.40-48
    • /
    • 2012
  • Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the embedded steel from concrete surface, which is integrated with an IR camera. Concrete samples with different cover depths are prepared. Each sample is embedded with a single rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enable heat induction from one surface and IR imaging from the other simultaneously. The impressed current (IC) method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during the entire heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded sample shows higher rates of heating and cooling than those of the non-corroded sample. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

Integrity Estimation of The RC Members Damaged by Corrosion of Main Rebar (철근이 부식된 철근콘크리트 구조물의 건전도 평가기술)

  • Kwon, Dae Hong;Yoo, Suk Hyeong;Noh, Sam Young
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.141-146
    • /
    • 2007
  • It is necessary to guarantee the safety, serviceability and durability of reinforced concrete structures over their service life. However, concrete structures represent a decrease in their durability due to the effects of external environments according to the passage of time, and such degradation in durability can cause structural degradation in materials. In concrete structures, some degradations in durability increase the corrosion of embedded rebars and also decrease the structural performance of materials. Thus, the structural condition assessment of RC materials damaged by corrosion of rebars becomes an important factor that judges needs to apply restoration. In order to detect the damage of reinforced concrete structures, a visual inspection, a nondestructive evaluation method(NDE) and a specific loading test have been employed. However, obscurities for visual inspection and inaccessible members raise difficulty in evaluating structure condition. For these reasons, detection of location and quantification of the damage in structures via structural response have been one of the very important topics in system identification research. The main objective of this project is to develope a methodologies for the damage identification via static responses of the members damaged by durability. Six reinforced concrete beams with variables of corrosion position and corrosion width were fabricated and the damage detections of corroded RC beams were performed by the optimization and the conjugate beam methods using static deflection. In results it is proved that the conjugate beam method could predict the damage of RC members practically.

Study of Chloride Corrosion Organic Inhibitors in Alkaline Pore Solution

  • Cabrini, M.;Lorenzi, S.;Pastore, T.;Pellegrini, S.
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.203-210
    • /
    • 2018
  • This paper compares the inhibition properties of aspartic and lactic acid salts with nitrite ions and their effect on critical chloride concentration. The tests were carried employing carbon steel specimens in saturated lime solution with varying pH in the range between13 to 13.6. The critical chloride concentration was estimated through multiple specimen potentiostatic tests at potentials in the usual range for passive rebar in the alkaline concrete of atmospheric structures. During tests, chloride salt was added every 48 h until all the specimens showed localized attacks. The cumulative distribution curves, i.e. the number of corroded specimens as a function of the chlorides concentration was obtained. Furthermore, IR spectra were recorded for the evaluation of the presence of the organic inhibitors on the passivity film. The results confirmed the inhibitory effect of 0.1M aspartate comparable with nitrite ions, at a similar concentration. Addition of calcium lactate did not result in an increase in the critical chloride concentration. However, the formation of a massive scale containing the substance that could reduce the corrosion propagation was observed.

Effect of Curing Solution and Pre-Rust Process on Rebar Corrosion in the Cement Composite (시멘트 복합체 내부 철근 부식에 양생 용액과 철근 사전 부식이 미치는 영향)

  • Du, Rujun;Jang, Indong;Lee, Hyerin;Yi, Chongku
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The corrosion of reinforcement is the main reason for the performance degradation of concrete structures. The pre-rusted parts of rebar in concrete structures are vulnerable to the corrosion, especially if the structure is exposed to wet or chlorinated environments. In this study, effects of different curing solution on corrosion behavior of the pre-rusted rebars in the cement composites were investigated. HCl(3%) and CaCl2(10%) solution were utilized to accelerate the pre-rust of the rebar, and each pre-rust condition rebar including reference (RE) were placed in mortar cylinder. Three kinds of samples then were cured in CaCl2 (3%) solution and tap water respectively for 120 days. Electrochemical polarization and half-cell potential measurement were used to monitor the influence of curing water on the corrosion behavior of pre-rusted steel bar in cement composite. The surface morphology and composition of corroded steel bar were analyzed by scanning electron microscope and energy dispersive X-ray diffraction. The results show that the corrosion rates of pre-rusted samples in both curing water are higher than that of non-pre-rusted samples. The corrosion rates of RE, CaCl2 and HCl pre-rusted samples in salt water were 8.14, 4.48, 13.81 times higher than those in tap water respectively, on the 120th day.

Lifetime of Insoluble Anode for Cathodic Protection on Concrete Construction

  • Sohn, Kicheon;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.56-59
    • /
    • 2005
  • In rebar concrete structure, the corrosion of rebar can arise the deterioration of concrete structure and may affect the safety of the whole system. Recently, several methods for corrosion protection have been used and are more important for concrete structure using the sand including chloride ion. Among several protections, electrical cathodic protection has been expected to be one of the most useful methods in corrosion protection for reinforcement of concrete structures. The anode for cathodic protection needs high current density, high corrosion resistance and low overvoltage. To fill up the special qualities, the insoluble anodes were developed and these anodes were coated with metal oxide of $TiO_2$, $ZrO_2$, $RuO_2$, and $IrO_2$. Lifetime of these anodes can be one of the important factors affecting the lifetime of concrete structure in cathodic protection. In this work, several anodes were made by sol-gel method and thermal decomposition method and the lifetime of these anodes was evaluated by NACE international standard test method, TM 0294-94. Also, we did analyze the properties of coated metal oxides.

A methodology to evaluate corroded RC structures using a probabilistic damage approach

  • Coelho, Karolinne O.;Leonel, Edson D.;Florez-Lopez, Julio
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Several aspects influence corrosive processes in reinforced concrete (RC) structures such as environmental conditions, structural geometry and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description of the corrosive phenomena. Besides, the definition of limit states in the reliability assessment requires a proper mechanical model. In this context, this study proposes a straightforward methodology for the mechanical-probabilistic modelling of RC structures subjected to reinforcements' corrosion. An improved damage approach is proposed to define the limit states for the probabilistic modelling, considering three main degradation phenomena: concrete cracking, rebar yielding and rebar corrosion caused either by chloride or carbonation mechanisms. The stochastic analysis is evaluated by the Monte Carlo simulation method due to the computational efficiency of the Lumped Damage Model for Corrosion (LDMC). The proposed mechanical-probabilistic methodology is implemented in a computational framework and applied to the analysis of a simply supported RC beam and a 2D RC frame. Curves illustrate the probability of failure evolution over a service life of 50 years. Moreover, the proposed model allows drawing the probability of failure map and then identifying the critical failure path for progressive collapse analysis. Collapse path changes caused by the corrosion phenomena are observed.

Numerical study of ITZ contribution on diffusion of chloride and induced rebar corrosion: A discussion of three-dimensional multiscale approach

  • Tu, Xi;Pang, Cunjun;Zhou, Xuhong;Chen, Airong
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.69-80
    • /
    • 2019
  • Modeling approach for mesoscopic model of concrete depicting mass transportation and physicochemical reaction is important since there is growing demand for accuracy and computational efficiency of numerical simulation. Mesoscopic numerical simulation considering binder, aggregate and Interfacial Transition Zone (ITZ) generally produces huge number of DOFs, which is inapplicable for full structure. In this paper, a three-dimensional multiscale approach describing three-phase structure of concrete was discussed numerically. An effective approach generating random aggregate in polygon based on checking centroid distance was introduced. Moreover, ITZ elements were built by parallel expanding the surface of aggregates on inner side. By combining mesoscopic model including full-graded aggregate and macroscopic model, cases related to diffusivity and thickness of ITZ, volume fraction and grade of aggregate were studied regarding the consideration of multiscale compensation. Results clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of, rebar diameter, concrete cover and exposure period.

Recommendations of Environmental Reduction Factor of FRP Rebar for Durability Design of Concrete Structure (콘크리트 보강용 FRP 보강근의 내구성 설계를 위한 환경영향계수의 제안)

  • Park Chan-Gi;Won Jong-Pil;Kang Joo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.529-539
    • /
    • 2004
  • The corrosion of steel rebars has been the major cause of reinforced concrete deterioration. FRP(Fiber-reinforced polymer) rebar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP rebar is prone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Therefore, the USA, Japan, Canada, UK. etc are using environmental reduction factor. Although difference design guidelines were drawn in many, including USA, Japan, Canada, UK etc, recommendations and coefficients that could take into account the long-term behavior of FRP reinforcement were not well defined. This study focuses on recommendation of environmental reduction factor of FRP rebar. Environment reduction factor were decided using durability test result. FRP rebars were subjected to twelve type of exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. The water absorption behavior was observed by means of simple gravimetric measurements and durability properties were investigated by performing tensile, compressive and short beam tests. Based on the experimental result, environmental reduction factor of hybrid FRP rebar(A), and (C) and CFRP rebar was decided as 0.85. Also, hybrid FRP rebar(B) and GFRP rebar were decided as 0.7 for the environmental reduction factor