• 제목/요약/키워드: corrosion level

검색결과 346건 처리시간 0.031초

3% NaCl 수용액중에서 복합조직강의 부식피로 파괴거동에 미치는 주파수변화의 영향 (The Influence of the Changing of Cyclic Frequency on the Corrosion Fatigue Fracture Behavior of the Dual Phase Steel in 3% NaCl Solution)

  • 오세욱;신규동;김웅집
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.141-148
    • /
    • 1995
  • Fatigue tests were carried out by a rotary bending testing machine of cantilever type. M.E.F.(ferrite encapsulated islands of martensite) materials were made by a series of heat treatment from a low carbon steel(SM 20 C). The fatigue tests were conducted at stress levels of 302 MPa and with frequencies of 25Hz, 2.5 Hz and 0.5 Hz in 3% NaCl solution. The fatigue strength increased with frequency got higher. The microcracks and corrosion pits were generated at the boundary between the matrix and the 2nd phase. The cracks generated by the corrosion pits were coalesced with the pits around the notch and became the initial crack. The $N_i/N_f$ ratio increased as the frequency and stress level decreased. The interference phenomenon increased with stress level and frequency gots higher. The crack propagation rate was delayed as the stress level lowers and the frequency gets higher, however, the range of the stress intensity factor depended only on a stress level.

  • PDF

시멘트계 보수재료로 코팅된 강재의 부식 및 휨강성 평가 (Evaluation of Steel Corrosion and Flexural Strength Coated with Cementitious Repair Material)

  • 윤용식;김태상;김호룡;권성준
    • 한국건설순환자원학회논문집
    • /
    • 제4권3호
    • /
    • pp.243-249
    • /
    • 2016
  • 본 연구에서는 시멘트계 보수재 코팅이 철판의 부식 저항성에 미치는 영향을 평가하가 위해 보통 철판(Normal), 용접철판(Welding), 용접 후 보수재 철판(Welding & coating)의 세 가지 경우에 대하여 7일간 ICM(Impressed Current Method)를 통하여 부식을 촉진시켰다. 이후 Faraday 법칙을 통해 얻은 이론 부식률, 실험 부식률 그리고 부식 실험 후 측정한 휨 강도를 비교 평가하였다. Normal case와 Welding case에서는 약 70% 수준의 부식률이 측정되었으며, Welding & coating case에서는 약 17%정도의 부식률이 측정되었다. 이는 시멘트계 보수재료의 코팅이 염화물 이온의 침투를 효과적으로 차단하였으며 이로 인해 부식전류의 발생이 억제되었기 때문이다. 휨 강도 역시 부식률 평가와 같은 경향을 나타내었으며 Welding & coating case에서 Welding case 대비 약 3.4배 큰 강도가 평가되었다. 시멘트계 보수재 코팅이 용접부에 시행되면 용접부 철판의 부식 차단에 효과적일 것으로 판단된다.

3.5% NaCl 수용액의 pH변화가 복합조직강의 부식피로파괴에 미치는 영향 (Influence of pH in 3.5% NaCl aqueous solution on corrosion fatigue-fracture of dual phase steel)

  • 오세욱;안호민;도영문
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.123-129
    • /
    • 1987
  • Corrosion fatigue fracture of dual phase steel(SS41) and raw material steel(SS41) were investigated in 3.5% NaCl aqueous solution at PH 4,6,9 and 11. The fatigue limit of dual phase steel is increased approximately 1.8 times larger than that of raw material in air. The corrosion fatigue life of dual phase steel is about 5-10 times larger than that of raw material in 3.5% NaCl aqueous solution. The reduction of fatigue life is larger for the acidsalt solution than for the alkali salt solution. The reduction of stress level on the reduction ratio of corrosion fatigue life is large as pH 6-11. The reduction ratio of corrosion fatigue life of dual phase steel and raw material is nearly coincided at pH 2. While at pH4-2 the reduction ratio of corrosion fatigue life only depends on the corrosion effect. It has been found that the corrosion resistance effect of dual phase steel is smaller than that of raw material in corrosion fatigue crack propagation rate. As pH below 6 is changed, it can be clearly observed from raw material that the brittle intergranular fracture is characterized, and from the above result, the influence of corrosion of dual phase steel is small.

  • PDF

1년 동안 서울지역 토양에 매설된 스테인리스강의 부식 (Corrosion of Stainless Steel Pipes Buried in the Soils of Seoul Metropolitan During One Year)

  • 현영민;김희산;김영호;장현정;박영복;최영준
    • Corrosion Science and Technology
    • /
    • 제11권2호
    • /
    • pp.56-64
    • /
    • 2012
  • Factors affecting corrosion of stainless steels such as pH, oxidation and redox potential (ORP), soil resistivity, water content of soil, chloride ion concentration, bacteria activity, and corrosion potential have been investigated using soil analysis, bacterial analysis, surfacial analysis, and analysis of corrosion potentials of several stainless steels buried in 8 sites of Seoul metropolitan for one year. Corrosion potential was affected by occurrance of corrosion as well as bacteria activity but the behavior of corrosion potential with time is different depending on occurrance of corrosion and bacteria activity. The main factor affecting corrosion of stainless steels in soil is level of chloride ion concentration which is also a main factor affecting corrosion of stainless steels in chloride containing drinkable water. Furthermore, guideline of stainless steels in drinkable water is concluded to be applicable to that in soil by the results from surfacial analysis.

3.5% NaCl 수용액의 온도변화가 복합조직강의 부식피로파괴에 미치는 영향 (The Effects of 3.5% NaCl Aqueous Solution Temperature on the Corrosion Fatigue Fracture of Dual phase steel)

  • 오세욱;도영문;박수영;김재철;김광영
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.140-147
    • /
    • 1992
  • Corrsion fatigue test was performed under rotated bending in 3.5% NaCl aqueous solution having a temperature from 278.deg.K in order to investigate the effects of aqueous solution remperature on the corrosion fatigue fracture of raw material steel(SS41) and dual phase steel that was produced from SS41 by a series of heat treatment. Corrosion fatigue life decreases remarkably with increase in solution temperature or with decrease in stress level. The corrosion fatigue life and the crack propagation rate at 303.deg.K show the similar behaviors with those at 318.deg.K, which is assumed to be caused by concentration polarization phenamena. The number and the lengths of microcracks increase with increase in solution temperature, so they lead to the decrease in corrosion fatigue life.

  • PDF

수용액내에서의 방청제 부식성능 평가연구 (A Study on the anti-Corrosion Properties of Inhibitor in Aqueous Solution)

  • 류화성;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.221-223
    • /
    • 2011
  • In this study, in order to comprehend performance of corrosion inhibitor, the experiment study was conducted about corrosion characteristic of 3 steps(0.0, norm 1/2, norm) compared to organic corrosion inhibitor standard use of liquid and molar 3 steps(0.0, 0.3, 0.6%) of Chloride by added amount of inorganic corrosion inhibitor by the corrosion inhibitor types about 2.4kg/㎥, 4.8kg/㎥ based on Chloride ion content 1.2kg/㎥ for service life prediction of concrete structure by using Poteniostat.

  • PDF

Al-황동의 분극특성에 미치는 응력의 영향 (Effect of Stress on the Polarization Characteristic of Al-brass)

  • 임우조;정해규;심경태
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.1-5
    • /
    • 2004
  • Al-brass is the raw material of mnufacturing tubes for heat exchanger of vessel where seawater is used to coolant because it has high level of heat coductivity and excellent mechanical properties and high level of corrosion resistance due to cuprous oxide($Cu_2O$) layer against seawater. However, damage of Al-brass tubes for heat exchanger of vessel is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment. In this study, to investigate on the effect of stress on the polarization characteristics of Al-brass. At the stress of 0% and 95% yield strength by constant displacement tester, in 3.5% NaCl + 0.1% $NH_4OH$ solution, the polarization tests were carried out. And thus open circuit potential, corrosion current density, anodic polarization, cyclic polarization and dezincification behavior of Al-brass are investigated.

Effects of Cement Alkalinity on the Time-to-Corrosion of Reinforcing Steel in Concrete under Chloride Exposure

  • Nam, Jingak;Hartt, William H.;Kim, Kijoon
    • Corrosion Science and Technology
    • /
    • 제3권6호
    • /
    • pp.245-250
    • /
    • 2004
  • A series of classical G109 type concrete specimens was exposed to cyclic wet and dry ponding with 15 w/o NaCl solution for approximately five years. Mix design variables included 1) three cement alkalinities (EqA of 0.97, 0.52, and 0.36) and 2) three water-cement ratios (0.50, 0.41, and 0.37). To determine the corrosion initiation time, corrosion potential and macro-cell current between top and bottom bars were monitored. Subsequent to corrosion initiation, specimens were autopsied and visually inspected. Concrete powder samples were collected from top rebar trace and chloride concentration was measured. Also, time-to-corrosion, $T_i$, for specimens of the individual mix designs was represented using Weibull analysis. Time-to-corrosion was a distributed parameter; and because of this, corrosion initiation of four identical specimens for each mix varied, often over a relatively wide range. Specimens fabricated using the lowest water cement ratio and the highest alkalinity cement exhibited the longest time-to-corrosion initiation and the highest chloride threshold levels. Time-to-corrosion did not increase monotonically with cement alkalinity, however, presumably as a consequence of relatively high $Cl^-$ binding in the lower pore water pH range. The chloride threshold level, $Cl_{th}$, increased with increasing $T_i$ and, consequently, was greatest for the highest cement alkalinity specimens.

Corrosion in Oil well Stimulation Processes Caused by Different Chelating Agents Based on EDTA Compounds

  • Calderon, J.A.;Vasquez, F.A.;Arbelaez, L.;Carreno, J.A.
    • Corrosion Science and Technology
    • /
    • 제16권2호
    • /
    • pp.59-63
    • /
    • 2017
  • Chelating solutions can be damaged by strong acids during oil production. To design effective corrosion inhibitors and other alternatives for corrosion control, it is important to understand not only the behavior of the system under operating condition but also the kinetics of electrochemical reactions during the corrosion process. In this study, the electrochemical behaviors of P-110 steel in aqueous fluids based on ethylenediaminetetraacetic acid (EDTA) compounds under various temperatures and hydrodynamic regime conditions were assessed. Electrochemical measurements were conducted using rotating disc electrodes manufactured. Electrolytes were prepared using aqueous compounds of EDTA like diammonium salt, disodium salt, and tetrasodium salt. Potentiodynamic polarization, electrochemical impedance, and mass loss tests were performed in order to assess the corrosion kinetic in electrolytes. Hydrodynamic effects were observed only in the cathodic polarization curve. This proves that hydrodynamic regime plays an important role in the corrosion of steel mainly in disodium and diammonium EDTA solutions. Two cathodic reactions controlled the corrosion process. However, oxygen level and pH of the electrolyte played the most important role in metal corrosion. Corrosion rates in those fluids were decreased drastically when oxygen concentration was reduced.

The Evaluation of Toxic Influence of Phosphate Corrosion Inhibitors in Drinking Water

  • Kim, Jin-A;Lee, Jun-Yeon;Eo, Soo-Mi;Shin, Jung-Sik;Kim, Myung-Hee
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.330-332
    • /
    • 2005
  • Ten phosphate corrosion inhibitors meet the required standards and drinking waters containing corrosion inhibitors also within 27 items of water quality standards. In addition, the T-P concentration was observed at a level of 2.342-2.909mg/L. Those results indicate that the corrosion inhibitors are not harmful and, as for drinking waters with inhibitors, they can be considered not to have any toxic influence on human body when used below the regulated level of 10mg/L.

  • PDF