• Title/Summary/Keyword: corrosion level

Search Result 348, Processing Time 0.028 seconds

Improvement of Structural Performance for the Precast Box Culvert (지하 프리캐스트 박스 암거의 구조적 성능 개선에 관한 연구)

  • 조병완;태기호;이계삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.393-398
    • /
    • 2000
  • To use concrete box culverts effectively, precast goods are manufactured at a factory, then linked and anchored with prestressing tendon at a field. However, the corrosion of rebar and prestressing tendon in the box culverts utilizing portland cement concrete is issued when the cracks occur at a underground water level. It has been reported that reported that expansive concrete, compared with portland cement concrete, has many structural advantages such as increasing capacity of watertight, controling initial crack and improving durability due to its property of expansion. During flexure test with RC beam made from expansive concrete, in the case of a constant section of concrete element, the lower steel ratio is, and in the case of a constant steel ratio, the more incremental the section of concrete element, the more incremental the amount of chemical prestress by expansive concrete is. At the segment of the box culverts using expansive concrete, the numbers of crack and its gap is reduced, and ultimate load and initial crack load is much larger than the segment at which expansive concrete is nor used. Also lay-out of tendon with a curvature generate upward force so that deflection is reduced. Through the whole procedure, it could be confirmed that performance precast box culvert by means of using expansive concrete is improved.

  • PDF

Carbon Fibers (II): Recent Technical Trends and Market Prospects of Carbon Fibers

  • Seo, Min-Kang;Min, Byung-Gak;Park, Soo-Jin
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.324-339
    • /
    • 2008
  • The principal aims of the review paper are (1) to establish broad overview information, both qualitative and quantitative, relating to the world market for polyacrylonitrile (PAN) or pitch-based carbon fibers; and (2) to generate an effective analysis and break down of consumption by process route and eventual end-use. The review paper also designed specifically to provide subscribers with an accurate, independent, and realistic assessment of the current status and future perspective of the market for carbon fibers in the world. The world market for carbon fibers continues to grow rapidly, fuelled by new industrial end uses, such as sport and leisure goods, aerospace, automotive applications, civil engineering and infrastructure repair, and immerging applications in energy generation. Demands for properties of carbon fibers used in those applications include many things such as strength, toughness, fatigue property, corrosion resistance, heat resistance, etc., and these become to be higher level. On the other hand, demands for manufacturing technologies of carbon fibers become to be difficult with these demands for properties, and these are wide variety such as high efficiencies, high qualities, many functions, labor saving, and low cost. In this review paper, thus, the recent carbon fibers corresponded to these needs, and its latest manufacturing technologies as well as market prospects are described.

Microstructure and Tribological Properties of Ti-Si-C-N Nanocomposite Coatings Prepared by Filtered Vacuum Arc Cathode Deposition

  • Elangovan, T.;Kim, Do-Geun;Lee, Seung-Hun;Kim, Jong-Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.54-54
    • /
    • 2011
  • The demand for low-friction, wear and corrosion resistant components, which operate under severe conditions, has directed attentions to advanced surface engineering technologies. The Filtered Vacuum Arc Cathode Deposition (FVACD) process has demonstrated atomically smooth surface at relatively high deposition rates over large surface areas. Preparation of Ti-Si-C-N nanocomposite coatings on (100) Si and stainless steel substrates with tetramethylsilane (TMS) gas pressures to optimize the film preparation conditions. Ti-S-C-N coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, nanoindentation, Rockwell C indentation and ball-on-disk wear tests. The XRD results have confirmed phase formation information of TiSiCN coatings, which shows mixing of TiN and TiC structure, corresponding to (111), (200) and (220) planes of TiCN. The chemical composition of the film was investigated by XPS core level spectra. The binding energy of the elements present in the films was estimated using XPS measurements and it shows present of elemental information corresponding to Ti2p, N1s, Si 2p and C1. Film hardness and elastic modulus were measured with a nano-indenter, and film hardness reached 40 GPa. Tribological behaviors of the films were evaluated using a ball-on-disk tribometer, and the films demonstrated properties of low-friction and good wear resistance.

  • PDF

The Effects on Structures caused by the Replacement of Bridge Bearing (교량구조물의 받침 교체 효과)

  • Park, Chang-Ho;Ku, Bon-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.209-217
    • /
    • 2002
  • The effects on structures caused by the replacement of the bridge bearings are investigated in this study. The bearings of the bridge are seriously deteriorated because of the breakage of lower concrete and the corrosion of the bearing itself. Also, the negative reaction states are created at some bearings on the abutment. Then, the bridge has occurred excessive vibrations and severe noise and impact whenever heavy trucks pass the above joints. The existing bearings are replaced using the adjustable bearing. The height of the bearings is adjusted to minimize the level difference of above joint and also to induce the appropriate distribution of live loads The effects of replacing the bearings are investigated by measuring the behaviors of the bridge without and with replacing works. The results without replacing the bearing show that the distribution of displacements and stresses is distorted in comparison with the analytical results. Also the bridge without replacing the bearing shows that the impact and vibration from the heavy trucks are larger than those with replacing the bearing. Load carrying capacity of the bridge increase about 1.8 times through replacing the bearing. The above results show that the structural performance of the bridge is improved by replacing only bridge bearings.

Performance evaluation of in-service open web girder steel railway bridge through full scale experimental investigations

  • Sundaram, B. Arun;Kesavan, K.;Parivallal, S.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.255-268
    • /
    • 2019
  • Civil infrastructures, such as bridges and tunnels are most important assets and their failure during service will have significant economic and social impact in any country. Behavior of a bridge can be evaluated only through actual monitoring/measurements of bridge members under the loads of interest. Theoretical analysis alone is not a good predictor of the ability of a bridge. In some cases, theoretical analyses can give less effect than actual since theoretical analyses do not consider the actual condition of the bridge, support conditions, level of corrosion and damage in members and connections etc. Hence actual measurements of bridge response should be considered in making decisions on structural integrity, especially in cases of high value bridges (large spans and major crossings). This paper describes in detail the experimental investigations carried out on an open web type steel railway bridge. Strain gages and displacement transducers were installed at critical locations and responses were measured during passage of locomotives. Stresses were evaluated and extrapolated to maximum design loading. The responses measured from the bridge were within the permissible limits. The methodology adopted shall be used for assessing the structural integrity of the bridge for the design loads.

Development of New Processes for the Decommissioning Decontamination and for Treatment and Disposal of the Secondary Low- and Intermediate-Level Radioactive Waste

  • John, Jan;Bartl, Pavel;Cubova, Katerina;Nemec, Mojmir;Semelova, Miroslava;Sebesta, Ferdinand;Sobova, Tereza;Sul'akova, Jana;Vetesnik, Ales;Vopalka, Dusan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.9-27
    • /
    • 2021
  • As an example of research activities in decontamination for decommissioning, new data are presented on the options for corrosion layer dissolution during the decommissioning decontamination, or persulfate regeneration for decontamination solutions re-use. For the management of spent decontamination solutions, new method based on solvent extraction of radionuclides into ionic liquid followed by electrodeposition of the radionuclides has been developed. Fields of applications of composite inorganic-organic absorbers or solid extractants with polyacrylonitrile (PAN) binding matrix for the treatment of liquid radioactive waste are reviewed; a method for americium separation from the boric acid containing NPP evaporator concentrates based on the TODGA-PAN material is discussed in more detail. Performance of a model of radionuclide transport, developed and implemented within the GoldSim programming environment, for the safety studies of the LLW/ILW repository is demonstrated on the specific case of the Richard repository (Czech Republic). Continuation and even broadening of these activities are expected in connection with the approaching end of the lifespan of the first blocks of the Czech NPPs.

Monitoring in a reinforced concrete structure for storing low and intermediate level radioactive waste. Lessons learnt after 25 years

  • Nuria Rebolledo;Julio Torres;Servando Chinchon-Paya;Javier Sanchez;Sylvia de Gregorio;Manuel Ordonez;Inmaculada Lopez
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1199-1209
    • /
    • 2023
  • Where concrete structures are designed to have a service life of over 100 years, their performance must be monitored, for the prediction models available are fraught with uncertainties that need to be eliminated. The present study was conducted to meet that need by monitoring a pilot structure for low and intermediate radioactive waste storage. Long-term operation of the sensors was observed to be adequate to determine the value of the parameters that characterise structural durability, such as corrosion current density. The parameters analysed were correlated to calculate their reciprocal impact: where applied in conjunction with artificial intelligence tools, temperature, for instance, was found suitable for finding activation energy and expansion coefficients and detecting outliers. The results showed the pilot structure to perform satisfactorily.

Preliminary Design for Preparing a Natural Learning and Experimental Area in Bukchun and Boundary(II) -Determination of Flood Level/Tree Planting, Analysis of Bukchun Scene- (북천지역 자연학습 체험단지 조성을 위한 기본 계획(II) -홍수위 및 식수결정, 북천 경관분석-)

  • 정종현;최석규;조세환
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.13-21
    • /
    • 2002
  • This study analyzed the characteristic of basic river structure, a flood level, the tree planting recommendation and syn thetic design, in order to establish a basic plan for preparing a natural practical area of environmental ecosystem at Bukchun and its surroundings. It was also investigated based on the opinion of citizens, geographical condition and the equipment/utilization examination of Bukchun which were included ecological circumstances, and thus provided a composite item for managing the natural river. This study also considered the development of the river in terms of culture, environment and ecology concept. The results were summarized as followed. Bukchun showed that the speed of a funning fluid is very fast on a period of flood. but very slow in a period of water shortage about 0.02 m/s. To prevent the speed change of a running fluid by a steep slope in a riverbed, there established Dongchun sluice gates under a bridge, including three sluice gates under a bridge, but there occurred extremely a riverbed erosion and corrosion section. The result of comparison between real flood degree and prediction flood data, there should perform a countermeasure the riverbed structure regulation of this area. Also, it was needed an exhaustive flood management in summer. According to the Bukchun and Hyungsangang riverbed investigation, there were needed preparation for natural/practical area and ecology Park development in the future. This study was investigated tree Planting/flower/blossom around the Bukchun and its surroundings. It was recommended willow, Italian poplar, bamboos and cherry blossoms in the Hyungsangang and Bukchun. There exist together historical space, environment space iud have enough possibility both natural learning space and civil rest space. And, it is possible to compose ecology natural learning and experimental area.

Design, Manufacturing, and Performance estimation of a Disposal Canister for the Ceramic Waste from Pyroprocessing (파이로 공정 세라믹 폐기물을 위한 처분용기의 설계, 제작 방안, 그리고 기능 평가)

  • Lee, Minsoo;Choi, Heui-Joo;Lee, Jong-Youl;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.209-218
    • /
    • 2012
  • A pyroprocess is currently being developed by KAERI to cope with a highly accumulated spent nuclear fuel in Korea. The pyroprocess produces a certain amount of high-level radioactive waste (HLW), which is solidified by a ceramic binder. The produced ceramic waste will be confined in a secure disposal canister and then placed in a deep geologic formation so as not to contaminate human environment. In this paper, the development of a disposal canister was overviewed by discussing mainly its design premises, constitution, manufacturing methods, corrosion resistance in a deep geologic environment, radiation shielding, and structural stability. The disposal canister should be safe from thermal, chemical, mechanical, and biological invasions for a very long time so as not to release any kind of radionuclides.

Tool Condition Monitoring with Non-contacting Sensors in Inconel 718 Milling Processes (비접촉센서를 이용한 Inconel 718 밀링가공에서 공구상태 감시)

  • Choi, Yong-Ki;Hwang, Moon-Chang;Kim, Young-Jun;Park, Kwang-Hwi;Koo, Joon-Young;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.445-451
    • /
    • 2016
  • The Inconel 718 alloy is a well-known super-heat-resistant alloy and a difficult-to-cut material. Inconel 718 with excellent corrosion and heat resistance is used in harsh environments. However, the heat generated is not released owing to excellent physical properties, making processes (e.g., adhesion and thermal fatigue) difficult. Tool condition monitoring in machining is significant in reducing manufacturing costs. The cutting tool is easily broken and worn because of the material properties of Inconel 718. Therefore, tool management is required to improve tool life and machinability. This study proposes a method of predicting the tool wear with non-contacting sensors (e.g., IR thermometer for measuring the cutting temperature and a microphone for measuring the sound pressure level in machining). The cutting temperature and sound pressure fluctuation according to the tool condition and cutting force are analyzed using experimental data. This experiment verifies the effectiveness of the non-contact measurement signals in tool condition monitoring.