DOI QR코드

DOI QR Code

Development of New Processes for the Decommissioning Decontamination and for Treatment and Disposal of the Secondary Low- and Intermediate-Level Radioactive Waste

  • Received : 2021.01.12
  • Accepted : 2021.02.18
  • Published : 2021.03.30

Abstract

As an example of research activities in decontamination for decommissioning, new data are presented on the options for corrosion layer dissolution during the decommissioning decontamination, or persulfate regeneration for decontamination solutions re-use. For the management of spent decontamination solutions, new method based on solvent extraction of radionuclides into ionic liquid followed by electrodeposition of the radionuclides has been developed. Fields of applications of composite inorganic-organic absorbers or solid extractants with polyacrylonitrile (PAN) binding matrix for the treatment of liquid radioactive waste are reviewed; a method for americium separation from the boric acid containing NPP evaporator concentrates based on the TODGA-PAN material is discussed in more detail. Performance of a model of radionuclide transport, developed and implemented within the GoldSim programming environment, for the safety studies of the LLW/ILW repository is demonstrated on the specific case of the Richard repository (Czech Republic). Continuation and even broadening of these activities are expected in connection with the approaching end of the lifespan of the first blocks of the Czech NPPs.

Keywords

References

  1. EU-project TRANSAT. "Transversal Actions for Tritium". Accessed Dec. 28 2020. Available from: http://transat-h2020.eu/.
  2. EU-project PREDIS. "The Pre-Disposal Management of Radioactive Waste." Accessed Dec. 28 2020. Available from: https://predis-h2020.eu/.
  3. EU-project EURAD. "European Joint Programme on Radioactive Waste Management." Accessed Dec. 28 2020. Available from: https://www.ejp-eurad.eu/.
  4. EU-project SHARE. "A Roadmap for Research in Decommissioning." Accessed Dec. 28 2020. Available from: https://share-h2020.eu/.
  5. T. Grygar and M. Zmitko, "Corrosion Products Behaviour Under VVER Primary Coolant Conditions", Chemistry 2002, INIS FR 1539, SFEN, Avignon (2002).
  6. M. Zmitko and J. Kysela, "Coolant Technology and Experience in VVER Units", PPCHEM, 7(3), 133-141 (2005).
  7. A. Szabo, K. Varga, Z. Nemeth, K. Rado, D. Oravetz, K.E. Mako, Z. Homonnay, E. Kuzmann, P. Tilky, J. Schunk, and G. Patek, "Effect of a Chemical Decontamination Procedure on the Corrosion State of the Heat Exchanger Tubes of Steam Generators", Corros. Sci., 48(9), 2727-2749 (2006). https://doi.org/10.1016/j.corsci.2005.09.008
  8. T. Sobova, "Study and Optimalization of the Parameters of the New Decontamination Media Developed for the Process of Decommissioning (in Czech)", Master Dissertation, Czech Technical University in Prague (2020).
  9. A.V. Mudring and S. Tang, "Ionic Liquids for Lanthanide and Actinide Chemistry", Eur. J. Inorg. Chem., 2010(18), 2569-2581 (2010). https://doi.org/10.1002/ejic.201000297
  10. D. Allen, G. Baston, A.E. Bradley, T. Gorman, A. Haile, I. Hamblett, J.E. Hatter, M.J.F. Healey, B. Hodgson, R. Lewin, K.V. Lovell, B. Newton, W.R. Pitner, D.W. Rooney, D. Sanders, K.R. Seddon, H.E. Sims, and R.C. Thied, "An Investigation of the Radiochemical Stability of Ionic Liquids", Green Chem., 4(2), 152-158 (2002). https://doi.org/10.1039/b111042j
  11. L. Berthon, S.I. Nikitenko, I. Bisel, C. Berthon, M. Faucon, B. Saucerotte, N. Zorz, and Ph. Moisy, "Influence of Gamma Irradiation on Hydrophobic Room-Temperature Ionic Liquids [BuMeIm]PF6 and [Bu-MeIm](CF3SO2)2N", Dalton Trans., (21), 2526-2534 (2006). https://doi.org/10.1039/b601111j
  12. X. Sun, H. Luo, and S. Dai, "Ionic Liquids-Based Extraction: A Promising Strategy for the Advanced Nuclear Fuel Cycle". Chem. Rev., 112(4), 2100-2128 (2012). https://doi.org/10.1021/cr200193x
  13. I. Billard, A. Ouadi, and C. Gaillard, "Liquid-Liquid Extraction of Actinides, Lanthanides, and Fission Products by Use of Ionic Liquids: from Discovery to Understanding", Anal. Bioanal. Chem., 400(6), 1555-1566 (2011). https://doi.org/10.1007/s00216-010-4478-x
  14. K. Cubova, M. Semelova, M. Nemec, and M. Straka, "Separation of Co from Simulated Decontamination Media Using Ionic Liquids", J. Radioanal. Nucl. Chem. 322, 1849-1855 (2019) https://doi.org/10.1007/s10967-019-06755-8
  15. K. Cubova, M. Nemec, M. Straka, and L. Szatmary. Method for Removing Cobalt from Aqueous Solutions, Czech Patent, 9, 308245 (2020).
  16. F. Sebesta and J. John. An Overview of the Development, Testing, and Application of Composite Absorbers, Los Alamos Laboratory Report, 30, LA-12875-MS (1995).
  17. F. Sebesta, "Preparation of Granular Forms of Powdered Materials for Their Application in Column Packed Beds", in: Natural Microporous Materials in Environmental Technology, P. Misaelides at al., eds., 473-484, Springer, Dodrecht (1999).
  18. F. Sebesta, J. John, and A. Motl. Development of Composite Ion Exchangers and their Use in Treatment of Liquid Radioactive Wastes, International Atomic Energy Agency Report, IAEA-TECDOC-947 (1997).
  19. F. Sebesta and K. Uvirova, Unpublished Results.
  20. F. Sebesta, J. John, A. Motl, and K. Stamberg. Evaluation of Polyacrylonitrile (PAN) as Binding Polymer for Absorbers to Treat Liquid Radioactive Wastes, Sandia National Laboratories Report, 46, SAND95-2729 (1995).
  21. F. Sebesta, J. John, and A. Motl. Evaluation of Polyacrylonitrile (PAN) as Binding Polymer for Absorbers to Treat Liquid Radioactive Wastes Part II, Sandia National Laboratories Report, 29, SAND96-1088 (1996).
  22. J. John, F. Sebesta, and A. Motl, "Application of New Inorganic-Organic Composite Absorbers with Polyacrylonitrile Binding Matrix for Separation of Radionuclides from Liquid Radioactive Wastes", in: Chemical Separation Technologies and Related Methods of Waste Management, G.R. Chopin and M.Kh. Khankhasayev, eds., Springer, Dordecht (1999).
  23. F. Sebesta, J. John, A. Motl, V. Peka, and E. Vackova, "Composite Absorbers Consisting of Inorganic Ion-Exchangers and Polyacrylonitrile Binding Matrix, III. Options for Treatment of Spent Composite Absorbers for Final Disposal", J. Radioanal. Nucl. Chem., 220(1), 65-67 (1997). https://doi.org/10.1007/BF02035349
  24. F. Sebesta, J. John, and A. Motl, "Composite Absorbers Consisting of Inorganic Ion Exchangers and Polyacrylonitrile Binding Matrix: Leaching of 137Cs from Cemented NiFC PAN Absorber", Radiochim. Acta, 78, 131-135 (1997). https://doi.org/10.1524/ract.1997.78.special-issue.131
  25. A. Motl, J. John, and F. Sebesta, "Composite Absorbers Consisting of Inorganic Ion Exchangers and Polyacrylonitrile Binding Matrix, V. Influence of the Ionisation Radiation on Leachability of 137Cs from Cemented NiFC PAN Absorber", J. Radioanal. Nucl. Chem., 222(1-2), 205-207 (1997). https://doi.org/10.1007/BF02034270
  26. F. Sebesta, J. John, and A. Motl. Verification of Technology of Decreasing the Long-Term Fuel Storage Pond Water Activity at NPP A-1 (in Czech), Czech Technical University in Prague Report, 11 (1992).
  27. D.P. Field, K. Harding, E.W. Hoooper, D. Keltos, D. Krasny, and F. Sebesta, "Caesium Removal from Pond Waters Using a Composite Ion Exchanger Containing Nickel Hexacyanoferrate", Czechosl. J. Phys., 49(1), 965-969 (1999). https://doi.org/10.1007/s10582-999-1025-0
  28. K.N. Brewer, T.A. Todd, D.J. Wood, P.A. Tullock, F. Sebesta, J. John, and A. Motl, "AMP PAN Column Tests for the Removal of 137Cs from Actual and Simulated INEEL High Activity Wastes", Czechosl. J. Phys., 49(1), 959-964 (1999). https://doi.org/10.1007/s10582-999-1024-1
  29. T.A. Todd, N.R. Mann, T.J. Trantner, F. Sebesta, J. John, and A. Motl, "Cesium Sorption from Concentrated Acidic Tank Waste Using Ammonium Molybdophosphate-polyacrylonitrile Composite Sorbents", J. Radioanal. Nucl. Chem., 254(1), 47-52 (2002). https://doi.org/10.1023/A:1020881212323
  30. S.F. Marsh, Z.V. Svitra, and S.M. Bowen. Distribution of 14 Elements on 58 Absorbers from Three Simulant Solutions (Acid-Dissolved Sludge, Acidified Supernate, and Alkaline Supernate) for Hanford HLW Tank 102-SY, Los Alamos National Laboratory Report, 96, LA-12654 (1994).
  31. S.F. Marsh, Z.V. Svitra, and S.M. Bowen. Distribution of 15 Elements on 58 Absorbers from Simulated Hanford Double-Shell Slurry Feed (DSSF), Los Alamos National Laboratory Report, 50, LA-12863 (1994).
  32. Z.V. Svitra, S.F. Marsh, and S.M. Bowen. Distribution of 12 Elements on 60 Absorbers from Simulated Hanford Neutralize Current Acid Waste, Los Alamos National Laboratory Report, 48, LA-12889 (1994).
  33. S.F. Marsh, Z.V. Svitra, and S.M. Bowen. Effect of Aqueous-Soluble Organic Compound on the Removal of Selected Radionucldes from High-Level Waste. Part 1: Distribution of Cs, Sr and Tc onto 18 Absorbers from an Irradiated Simulant for Hanford Tank 101-SY, Los Alamos National Laboratory Report, 10, LA-12862 (1995).
  34. F. Sebesta and A. Motl, "Testing of Composite Inorganic-Organic Ion Exchangers for the Treatment of Liquid Radioactive Wastes from NPP Krsko, Slovenia", Thesis, Czech Technical University in Prague (1991).
  35. P. Franta, L. Kuca, K. Svoboda, and F. Sebesta, "Sorption of Plutonium and Americium from Neutral Borate Solutions on Inorganic Ion-Exchangers", Nucleon, 2, 19-23 (1996).
  36. E.P. Horwitz, R. Chiarizia, M.L. Dietz, H. Diamond, and D. Nelson, "Separation and Preconcentration of Actinides from Acidic Media by Extraction Chromatography", Anal. Chim. Acta, 281(2), 361-372 (1993). https://doi.org/10.1016/0003-2670(93)85194-O
  37. E.P. Horwitz, R. Chiarizia, and M.L. Dietz, "Dipex: A New Extraction Chromatographic Material for the Separation and Preconcentration of Actinides from Aqueous Solution", React. Funct. Polym., 33(1), 25-36 (1997). https://doi.org/10.1016/S1381-5148(97)00013-8
  38. E.P. Horwitz, D.R. McAlister, A.H. Bond, and R.E. Barrans Jr., "Novel Extraction of Chromatographic Resins Based on Tetraalkyldiglycolamides: Characterization and Potential Applications", Solv. Extr. Ion. Exch., 23(3), 319-344 (2005). https://doi.org/10.1081/SEI-200049898
  39. K.V. Hecke and G. Modolo, "Separation of Actinides from Low Level Liquid Wastes (LLLW) by Extraction Chromatography Using Novel DMDOHEMA and TODGA Impregnated Resins", J. Radioanal. Nucl. Chem., 261, 269-275 (2004). https://doi.org/10.1023/B:JRNC.0000034858.26483.ae
  40. F. Sebesta, Exchanger Composed from an Active Component and a Binding Organic Matrix and the Way of Its Production. Czech Patent, A.O. 273 369 (1992).
  41. P. Bartl, "Determination of Americium in Operational Radioactive Waste (in Czech)", Master Dissertation, Czech Technical University in Prague (2014).
  42. M.H. Lee, C.J. Kim, and B.H. Boo, "Electrodeposition of Alpha-Emmiting Nuclides from Ammonium Oxalate-Ammonium Sulfate Electrolyte", Bull. Korean Chem. Soc., 21(2), 175-179 (2000). https://doi.org/10.5012/BKCS.2000.21.2.175
  43. K. Schwarzer, "Radionuclide Transport in Soil-Description and Application of a Calculational Model", Nucl. Technol., 46(2), 248-254 (1979). https://doi.org/10.13182/NT79-A32324
  44. M. Bianchi, H.H. Liu, and J.T. Birkholzer, "Radionuclide Transport Behaviour in a Generic Geological Radioactive Waste Repository", Groundwater, 53(3), 440-451 (2015). https://doi.org/10.1111/gwat.12171
  45. W. Olszewska, A. Miskiewicz, G. Zakrzewska-Koltuniewicz, L. Lankof, and L. Pajak, "Multibarrier System Preventing Migration of Radionuclides From Radioactive Waste Repository", Nukleonika, 60(3), 557-563 (2015). https://doi.org/10.1515/nuka-2015-0103
  46. L. Sciple, J. Dostal, J. Pritrsky, A. Vetesnik, D. Vopalka, and P. Ondracek. Safety Case of Richard Repository (in Czech), AmecFW Technical Report, 171, C1981_DP2_DOC_05_0 (2017).
  47. GoldSim Technology Group, GoldSim Contaminant Transport Module User's Guide, Version 7.1, GoldSim Technology Group, Washington D.C. (2018).
  48. A. Saltelli, K. Chan, and E.M. Scott, Sensitivity Analysis, Wiley, New York (2009).
  49. A. Vetesnik, J. Landa, A. Vokal, and D. Vopalka, "A Sensitivity and Probability Analysis of the Safety of Deep Geological Repositories Situated in Crystalline Rock", J. Radioanal. Nucl. Chem., 304(1), 409-415 (2015). https://doi.org/10.1007/s10967-014-3883-6
  50. S. Konopaskova, M. Milicky, M. Polak, L. Vrbata. Safety Case of Richard Repository (in Czech), SURAO Technical Report, 109 (2016).
  51. M. Hokr, V. Havlova, A. Vetesnik, L. Gvozdik, D. Vopalka, and J. Riha. Testing of Transport Models Using Foreign In-Situ Experiments, SURAO Technical Report, 53, 481 (2020)
  52. J.M. Soler, I. Neretnieks, L. Moreno, L. Liu, S. Meng, U. Svensson, P. Trinchero, A. Iraola, H. Ebrahimi, J. Molinero, P. Vidstrand, G. Deissmann, J. Riha, M. Hokr, A. Vetesnik, D. Vopalka, L. Gvozdik, M. Polak, D. Trpkosova, V. Havlova, D. K. Park, S.H. Ji, Y. Tachi, and T. Ito. Evaluation and Modelling Report of Task 9A Based on Comparisons and Analyses of Predictive Modelling Results for the REPRO WPDE Experiments, Svensk Karnbranslehantering AB Technical Report, 156, R-17-10 (2019).