DOI QR코드

DOI QR Code

Sorption of Np(IV) on MX-80 in Ca-Na-Cl Type Reference Water of Crystalline Rock

  • Received : 2020.10.24
  • Accepted : 2020.11.18
  • Published : 2021.03.30

Abstract

The pH dependence of sorption distribution coefficient (Kd) of Np(IV) on MX-80 in Ca-Na-Cl type solution with the ionic strength of 0.3 M, which was similar to one of the reference groundwaters in crystalline rock, was experimentally investigated under the reducing conditions. The overall trend of Kd on MX-80 was independent of pH at 5 ≤ pH ≤ 10 but increased as pH increased at pH ≤ 5. The 2-site protolysis non-electrostatic surface complexation and cation exchange model was applied to the experimentally measured pH dependence of Kd and the optimized surface complexation constants of Np(IV) sorption on MX-80 were estimated. The values of surface complexation constants in this work agreed relatively well with those in the Na-Ca-Cl solution previously evaluated, suggesting that compared to Na+, the competition of Ca2+ with Np(IV) for surface complexation on MX-80 was not much strong in Ca-Na-Cl solution. The sorption model well predicted the pH dependence of Kd values but slightly overestimated the sorption at the low pH region.

Keywords

References

  1. Nuclear Waste Management Organization. Postclosure Safety Assessment of a Used Fuel Repository in Crystalline Rock, Nuclear Waste Management Organization Technical Report, 1-46, NWMO TR-2017-02 (2017).
  2. P. Vilks. Sorption of Selected Radionuclides on Sedimentary Rocks in Saline Conditions-Literature Review, Nuclear Waste Management Organization Technical Report, 1-14, NWMO TR-2011-12 (2011).
  3. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev., 113(2), 1016-1062 (2013). https://doi.org/10.1021/cr300370h
  4. M. Zavarin, B.A. Powell, M. Bourbin, P.H. Zhao, and A.B. Kersting, "Np(V) and Pu(V) Ion Exchange and Surface-Mediated Reduction Mechanisms on Montmorillonite", Environ. Sci. Technol., 46, 2692-2698 (2012). https://doi.org/10.1021/es203505g
  5. N. Chapman, M. Apted, W. Aspinall, K. Berryman, M. Cloos, C. Connor, L. Connor, O. Jaquet, K. Kiyosugi, E. Scourse, S. Sparks, M. Stirling, L. Wallace, and J. Goto. TOPAZ Project: Long-term Tectonic Hazard to Geological Repositories, Nuclear Waste Management Organization of Japan Technical Report, 1-11, NUMOTR-12-05 (2012).
  6. National Academy of Science, "A Study of the Isolation for Geologic Disposal of Radioactive Wastes", Waste Isolation Systems Panels, eds., 1st ed., National Academy Press, Washington D.C. (1983).
  7. S. Tanaka, S. Nagasaki, A. Suzuki, T. Yamaguchi, S. Tsushima, K. Yamaguchi, and Y. Moriyama. The Underground Environment Migration Behaviour of TRU Elements (3), The University of Tokyo Report, 64-65, UTNL-371 (1998).
  8. G.M.N. Baston, J.A. Berry, M. Brownsword, T.G. Heath, D.J. Ilett, C.J. Tweed, and M. Yui, "The Effect of Temperature on the Sorption of Technetium, Uranium, Neptunium and Curium on Bentonite, Tuff and Granodionite", Proc. Mat. Res. Soc., 465, 805-812 (1997).
  9. S. Nagasaki, S. Tanaka, and A. Suzuki, "Sorption of Neptunium on Bentonite and its Migration in Geosphere", Colloids Surf. A Physicochem. Eng. Asp., 155(2-3), 137-143 (1999). https://doi.org/10.1016/S0927-7757(99)00046-1
  10. N.L. Banik, R. Marsac, J. Lutzenkirchen, C.M. Marquardt, K. Dardenne, D. Schild, J. Rothe, A. Diascorn, T. Kupcik, T. Schafer, and H. Geckeis, "Neptunium Redox Speciation at the Illite Surface", Geochim. Cosmochim. Acta, 152, 39-51 (2015). https://doi.org/10.1016/j.gca.2014.12.021
  11. A. Kitamura and T. Tomura, and T.Shibutani. Sorption Behaviour of Neptunium onto Smectite Under Reducing Conditions in Carbonate Media, The Japan Nuclear Cycle Development Institute Report, 659-666, JAERI-CONF-2002-004 (2002).
  12. T. Ashida, T. Shibutani, H. Sato, Y. Tachi, A. Kitamura and K. Kawamura. Nuclide Migration Study in the QUALITY. Data Acquisitions for the Second Progress Report, The Japan Nuclear Cycle Development Institute Report, 1-58, JNC-TN-8400-99-083 (1999).
  13. P. Bertetti. Determination of Sorption Properties for Sedimentary Rocks Under Saline, Reducing Conditions-Key Radionuclides, Nuclear Waste Management Organization Technical Report, 1-96, NWMO TR-2016-08 (2016).
  14. S. Nagasaki, J. Riddoch, T. Saito, J. Goguen, A. Walker, and T. Yang, "Sorption Behaviour of Np(IV) on Illite, Shale and MX-80 in High Ionic Strength Solutions", J. Radioanal. Nucl. Chem., 313, 1-11 (2017). https://doi.org/10.1007/s10967-017-5290-2
  15. S. Nagasaki, T. Saito, and T. Yang, "Sorption Behaviour of Np(V) on Illite, Shale and MX-80 in High Ionic Strength Solutions", J. Radioanal. Nucl. Chem., 308, 143-153 (2016). https://doi.org/10.1007/s10967-015-4332-x
  16. M.H. Bradbury and B. Baeyens, "Modelling the Sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on Montmorillonite: Linear Free Energy Relationships and Estimates of Surface Binding Constants for Some Selected Heavy Metals and Actinides", Geochim. Cosmochim. Acta, 69(4), 875-892 (2005). https://doi.org/10.1016/j.gca.2004.07.020
  17. M.H. Bradbury and B. Baeyens, "Sorption Modelling on Illite. Part II: Actinide Sorption and Linear Free Energy Relationships", Geochim. Cosmochim. Acta, 73, 1004-1013 (2009). https://doi.org/10.1016/j.gca.2008.11.016
  18. A. Kirishima, O. Tochiyama, K. Tanaka, Y. Niibori, and T. Mitsugashira, "Redox Speciation Method for Neptunium in a Wide Range of Concentrations", Radiochim, Acta, 91, 191-196 (2003). https://doi.org/10.1524/ract.91.4.191.19969
  19. A. Kirishima. Private Communication (2014).
  20. S. Nagasaki. "Extraction and Colloidal Geochemistry of Actinides", Ph.D. Dissertation, The University of Tokyo (1993).
  21. Y. Inoue, O. Tochiyama, and N. Shinohara, "The Effect of Np Concentration on the Preparation of Np(III) by Hydrogen Reduction", J. Inorg. Nucl. Chem., 42(5), 757-759 (1980). https://doi.org/10.1016/0022-1902(80)80226-0
  22. L. Ciavatta, "The Specific Interaction Theory in the Evaluating Ionic Equilibria", Ann. Chim. (Rome), 70, 551-562 (1980).
  23. R. Guillaumont, Th. Fanghanel, J. Fuger, I. Grenthe, V. Neck, D.A. Palmer, and M.H. Rand, "Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium", in: Chemical Thermodynamics, F.J. Mompean, C.D. Orti, K.B. Said, and OECD/NEA Data Bank, eds., Vol. 5, Elsevier, Amsterdam (2003).
  24. D.L. Parkhurst and C.A.J. Appelo. User's Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport and Inverse Geochemical Calculation, U.S. Geological Survey Water-Resources Investigation Report, 1-312, 99-4259 (1999).
  25. J. Goguen, A. Walker, J. Racette, J. Riddoch, and S. Nagasaki, "Sorption of Pd on Illite, MX-80 Bentonite and Shale in Na-Ca-Cl Solutions", Nucl. Eng., 53(3), 894-900 (2021). https://doi.org/10.1016/j.net.2020.09.001