• Title/Summary/Keyword: corrosion evaluation

Search Result 911, Processing Time 0.025 seconds

A Study on the Performance Standards for a Natural Type Landscaping Rocks by Utilizing GFRC(Glass Fiber Reinforced Concrete) (유리섬유강화콘크리트를 이용한 자연형 경관석의 성능기준 연구)

  • Yoon, Bok-Mo;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.33-42
    • /
    • 2012
  • This study aims to establish the performance standard for natural type landscape stone GFRC. The required performance such as material performance, structural safety performance, durability performance, and landscape performance were selected through an examination of domestic and overseas performance related references and examples, and through the questionnaires obtained from 40 experts, and the verified items and performance standards were proposed. Among the required performances, the material performance(glass fiber content, air-dried gravity), structural safety performance(flexural strength, compressive strength), durability performance(crack, corrosion resistance), and landscape performance(texture, efflorescence) were selected through the questionnaires obtained from the experts. In the case of material performance and structural safety performance with the corresponding standards that existed, final performance evaluation standard was proposed by conducting a test and comparing it with the existing standard sample, and in the case of durability performance and landscape performance on which standard does not existed, they were verified by measuring directly through field examination of formative landscape items such as artificial waterfall etc. In this study, performance standard for the material on natural type landscaping rocks GFRC and items which can be evaluated after construction such as material performance, structural safety performance, durability performance, landscape performance, and so forth were proposed, however, follow up study for pro-environmental and ecological performance standard which were recently gaining force would be required through a continuous monitoring for the construction samples afterwards.

Experimental Research on the Effect of the Number of Layers by Overlay Welding of Monel-Clad Pipe on Weldability (모넬(Monel)-Clad 파이프의 오버레이 용접 적층수가 용접성에 미치는 영향에 관한 실험적 연구)

  • Choi, Hyeok;Park, Joon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.42-50
    • /
    • 2016
  • Overlay welding affects the chemical components and weld hardness by dilution of the lamination layer thickness, which determines the surface properties. This study experimentally investigates different numbers of layers for overlay welding monel materials, which are anti-corrosion materials. The Fe content, weldability of the base metal and monel materials, hardness, and surface flatness were examined. Each evaluation was carried out after overlay welding with three layers on the base material and pipe base material of the plate. The Fe content was evaluated by analyzing the constituents of each layer. The Fe content was satisfactory in the three layers. The weldability of the laminate specimens was evaluated by a bending test. The hardness and bead flatness of the laminate specimens were evaluated by micro Vickers and 3D measurements. The hardness was highest in the heat-affected zone with one layer, and it decreased with increasing lamination. In the case of bead flatness, there is a sharp difference in the deviation with increasing numbers of laminations, which should be considered carefully.

Preparation and Performance Evaluation of Zinc Phosphate-Coated Mica Anticorrrosive Pigment (운모상에 인산아연이 도포된 방청안료의 제조 및 성능평가)

  • Lee, Yu Jin;Park, Seong Soo;Hong, Seong Soo;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • The zinc phosphate-coated mica (ZP/mica) pigments were prepared using phosphoric acid, zinc nitrate and mica as starting materials, and used as anticorrosive pigments. The scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were used to observe the morphology and crystal structure of prepared pigments. The prepared pigments were incorporated into an epoxy binder to prepare coating and the corrosion inhibition performance of the pigments was evaluated using electrochemical impedance spectroscopy (EIS). It was found that the anticorrosive performance of the ZP/mica pigment prepared at $70^{\circ}C$ was the better than that prepared at $20^{\circ}C$. The formation of ZnO, in addition to $Zn_3(PO_4)_2{\cdot}2H_2O$, was observed on ZP/mica pigment prepared at $70^{\circ}C$. The excellent anticorrosive performance of ZP/mica pigment could be ascribed to the synergistic effect with electrochemical anticorrosive mechanism from zinc compounds on mica and barrier anticorrosive mechanism from lamellar mica.

Stress Distributions at the Dissimilar Metal Weld of Safety Injection Nozzles According to Safe-end Length and SMW Thickness (안전단 길이 및 동종금속용접부 두께 변화에 따른 안전주입노즐 이종금속용접부의 응력분포)

  • Kim, Tae-Jin;Jeong, Woo-Chul;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.979-984
    • /
    • 2015
  • In the present paper, we evaluate the effects of the safe-end length and thickness of the similar metal weld (SMW) of safety injection nozzles on stress distributions at the dissimilar metal weld (DMW). For this evaluation, we carry out detailed 2-D axisymmetric finite element analyses by considering four different values of the safe-end length and four different values of the thickness of SMW. Based on the results obtained, we found that the SMW thickness affects the axial stresses at the center of the DMW for the shorter safe-end length; on the other hand, it does not affect the hoop stresses. In terms of the safe-end length, the values of the axial and hoop stresses at the inner surface of the DMW center increase as the safe-end length increases. In particular, for the cases considered in the present study, the stress distributions at the DMW center can be categorized according to certain values of safe-end length.

Surgical treatment on the stenosis of the esophagus (식도섬책에 대한 외과적 치료)

  • Kim, Geun-Ho;Kim, Yeong-Hak
    • Journal of Chest Surgery
    • /
    • v.22 no.1
    • /
    • pp.134-140
    • /
    • 1989
  • A clinical evaluation was made on total 207 cases of corrosive esophageal stricture after ingestion of various corrosive substances and 173 cases of neoplasms in the esophagus and the cardia. The various complications associated with esophageal corrosion were observed on 28 cases [13.5%] in a total of 207 cases. Pathoanatomic findings of complication may be classified to the five category as follow; [1] stenosis in the pharynx due to adhesion of the epiglottis, [2] esophagobronchial fistula, [3] esophageal perforation with bougienation, [4] necrotic rupture of the esophagus and the stomach, and [5] so-called chronic corrosive gastritis. The comparative studies were done on a total of 165 cases of the various procedures of esophagoplasty to the reconstruction of the esophagus, which consists of antethoracal esophagoplasty with jejunum, retrosternal esophagoplasty with jejunum, retrosternal esophagoplasty with right colon, and retrosternal esophagoplasty with left colon. There is no hard and fast rule in selection of jejunum, right colon or left colon as the transplanting bowel and an operative method either antethoracal or retrosternal approach. When there was no possibility of the complication and no any defect of the anatomical states, one stage retrosternal esophagoplasty using right colon was better in various points of view. The 173 patients of the neoplasm of the esophagus consist of 28 cases of benign tumors and 145 cases of malignant tumors in the esophagus and cardia. 28 cases of benign tumors in the esophagus received the surgical treatment and they obtained with excellent results postoperatively. Of the 145 patients of esophageal carcinoma who received surgical managements, 101 cases [69.6%] were found to be operable and 44 cases [30.3%] were inoperable. Due to the various level of carcinoma in the esophagus, the following different surgical procedure was properly used case by case to get the best results in each case. Esophageal carcinoma in the upper and middle third segment received the total esophagectomy and the reconstruction of the esophagus using right colon by substernal procedure. Esophageal carcinoma in the lower third segment received an esophagojejunostomy in the mediastinum after the resection of lower third segment of the esophagus. Carcinoma in the esophago cardia and the stomach received also an esophagojejunostomy after the resection of the lower third segment of the esophagus and subtotal gastrectomy. For the 44 patients with inoperable carcinoma, the several palliative surgical managements such as gastrostomy or jejunostomy for feeding and esophagojejunostomy for bypass of the lower esophagus and the stomach were properly performed case by case for their maximum improvement.

  • PDF

Penetration Properties of Airborne Chlorides on Concrete Exposed in Marine Environment (해안환경에 노출된 콘크리트의 비래염분 침투 특성)

  • Lee, Jong-Suk;An, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.553-558
    • /
    • 2012
  • Airborne chlorides are transported to inland by sea wind to be attached to seashore concrete structure surface then penetrated into concrete structure members. Since the surface attached chloride amount are dependent on the amount of airborne chlorides, the prediction of distribution of airborne chlorides is important information in preventing chloride corrosion problems in seashore concrete structures. The prediction of surface chloride amount from airborne chlorides environment is extremely difficult than concrete directly in contact with seawater. In addition, their penetrating tendency is different from that of concrete immersed in seawater. In this study, properties of surface and penetrated chlorides under airborne chlorides environment are investigated. Concrete specimens were manufactured and exposed to marine environment for 3 years. The specimens were analyzed at the time durations of 1, 2, and 3 years to check surface chloride amount to penetrated chloride depth. The results revealed that there were certain differences according to surface roughness of concrete and with and without washing effect due to rainfalls. The evaluation results showed that penetrated chlorides depend on amount of airborne chlorides and duration of exposure. In addition, a notable tendency of having deeper chloride penetration and higher chloride content in concrete members under long-term exposure was observed.

Evaluation on Thermal Performance of Thermosyphon by Numerical Analysis (열사이펀의 열성능 산정을 위한 수치해석 연구)

  • Jang, Changkyu;Choi, Changho;Lee, Jangguen;Lee, Chulho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.57-66
    • /
    • 2014
  • The ground in cold region consists of active and permafrost layers. The active layer at the unstable state may cause ground corrosion and uplift, when the temperature of frozen ground increases due to seasonal changes. The thermosyphon is one of the stabilization methods to maintain the ground stability in the frozen ground. The thermosyphon is a closed two-phase convection device that extracts heat from the ground and discharges it into the atmosphere. In this study, ground freezing experiment using a thermosyphon and simulated ground with the isolation material was conducted to evaluate the thermal performance of the thermosyphon. In order to consider the thermal performance of the thermosyphon, commercial numerical program (TEMP/W) was adopted. Likewise, the thermal performance of thermosyphon and thermal properties of ground were applied in the numerical model. In a series of comparisons with experiment results and numerical study, thermal performance of thermosyphon can be evaluated.

Evaluation of Tensile Property of Austenitic Alloys Exposed to High-Temperature S-CO2 Environment (고온 S-CO2 환경에 노출된 오스테나이트계 합금의 인장특성 평가)

  • Kim, Hyunmyung;Lee, Ho Jung;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1415-1420
    • /
    • 2014
  • Super-critical $CO_2$ ($S-CO_2$) Brayton cycle has been considered to replace the current steam Rankine cycle in Sodium-cooled Fast Reactor (SFR) in order to improve the inherent safety and thermal efficiency. Several austenitic alloys are considered as the structural materials for high temperature $S-CO_2$ environment.. Microstructural change after long-term exposure to high temperature $S-CO_2$ environment could affect to the mechanical properties. In this study, candidate materials (austenitic stainless steels and Alloy 800HT) were exposed to $S-CO_2$ to assess oxidation resistance and the change in tensile properties. Loss of ductility was observed for some austenitic stainless steels even after 250 h exposure. The contribution of $S-CO_2$ environment on such changes was analyzed based on the characterization of the surface oxide and carburization of the materials in which 316H and 800H showed different oxidation behaviors.

Flexural performance evaluation of fiber reinforced segments with GFRP plate (GFRP plate를 적용한 섬유보강세그먼트의 휨성능 평가)

  • Oh, Ri-On;Park, Sung-Ki;Sung, Sang-Kyung;Lee, Jae-Young;Kim, Hwang-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.839-854
    • /
    • 2018
  • This study was performed to evaluate the performance of GFRP plate reinforced segments for TBM tunnel support. Recently, the SFRC segment has been applied to prevent local damage such as reduction of the amount of reinforcing bars of the segment, crack control and breakage. However, the steel fiber used in the SFRC segment has a problem of durability deterioration due to fiber corrosion. Compared with the RC segment, the maximum flexural load reduction of the SFRC segment hinders the broad application range of the TBM tunnel segment. Therefore, GFRP plate was considered as a stiffener for the maximum load increase of SFRC segment, and structural synthetic fiber without corrosive concern was used as a substitute for steel fiber. The flexural performance of the segment was evaluated by using the type of reinforcing fiber and GFRP plate thickness as the main parameters. As a result, the maximum load and the flexural toughness were increased by 21.78~23.03% and 0.5~7.96%, respectively, as compared with the segments reinforced with reinforcing fiber and GFRP plate of 3 mm thickness.

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.