• 제목/요약/키워드: corrosion current

검색결과 1,107건 처리시간 0.046초

흡수식냉동기용 열교환기 세관의 부식에 관한 연구 (The Study of Corrosion of Heat Exchanger Tube for Absorption Refrigeration Machine)

  • 임우조;정기철;윤병두
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.147-152
    • /
    • 2002
  • This paper was studied on corrosion of heat exchanger tube for absorption refrigeration machine. In the 62 % lithium bromide solution at $60^{\circ}C$, polarization test of Cu, Al-brass, 10 % cupro nickel(90-10 % Cu-Ni) and 30 % cupronickel(70-30 % Cu-Ni) tube was carried out. And polarization behavior, polarization resistance characteristics, open circuit potential, anodic polarization of heat exchanger tube for absorption refrigeration machine were considered. The main results are as following: The open circuit potential of Al-brass tube becomes less noble than that of Cu tube, corrosion current density of that becomes lower than Cu tube. The open circuit potential of cupronickel tube is more noble than that of Cu tube, corrosion current density of that is controlled than Cu tube. The passivation critical current of 30 % Cu-Ni tube is lower than that of 10 % Cu-Ni tube, potential of passive region of that is more wide than 10 % Cu-Ni tube.

  • PDF

마이크로 드로플릿 셀 기법을 이용한 예민화 된 304 스테인리스강의 미세전기화학 특성 (Micro-electrochemical Characteristics of Sensitized 304 Stainless steel Using Micro-droplet cell Techniques)

  • 김규섭;이재봉
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.300-309
    • /
    • 2010
  • The influences of sensitization on localized corrosion resistance of 304 stainless steel, were investigated, using micro-dropletcell techniques. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local current with the potentiodynamic polarization, linear polarization and a.c. impedance. Micro-electrochemical tests were carried out inside of the grain and on grain boundaries separately. It was found that sensitization decreased the pitting potential, increasing corrosion current density around grain boundaries. Galvanic current density was also measured between grain and grain boundaries.

Fe와 galvanic couple된 알루미늄의 내식성에 미치는 마그네슘의 영향 (Effects of Mg on corrosion resistance of Al galvanically coupled to Fe)

  • 현영민;김희산
    • Corrosion Science and Technology
    • /
    • 제12권1호
    • /
    • pp.40-49
    • /
    • 2013
  • Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [$Cl^-$] around 0.025 M of [$Cl^-$] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions.

$LiBr-H_2O$계 흡수식냉동기의 부식에 미치는 LiBr 농도의 영향 (The Effect of LiBr Concentration on Corrosion of Absorption Refrigeration Systems Using $LiBr-H_2O$ Working Fluids)

  • 임우조;정기철
    • 한국가스학회지
    • /
    • 제5권4호
    • /
    • pp.33-39
    • /
    • 2001
  • 흡수식냉동기의 작동매체로 사용되고 있는 LiBr수용액 중에서 각 구성재료인 일반구조용 압연강재, 동 및 동합금재인 Ai-Ni bronze의 부식거동에 관한 연구를 하기 위하여, 여러 가지 농도의 LiBr 수용액 중에서 각 재료에 대한 분극실험을 실시하여 부식거동을 고찰한 결과 다음과 같은 결론을 얻었다. 1) 수용액의 LiBr 농도가 증가할수록 각 재료의 분극저항은 낮아지고, 개로전위는 비전 위화되면서 부식전류밀도는 높게 배류된다. 2) 일반구조용 압연강재의 개로전위는 동 및 Al-Ni bronze의 개로전위보다 비전위화되면서 부식전류밀도는 더 높게 배류된다. 3) 동 및 Al-Ni bronze에 대한 $62\%$ LiBr 수용액 중에서의 양극분극은 활성태로 지속되지만, 천연해수 중에서의 양극분극은 활성태가 지속되다가 부동태화전류가 나타난다.

  • PDF

와전류 기법을 이용한 가공전력선 열화 진단 (Degradation Diagnosis of Overhead Power Lines Using Eddy Current Technology)

  • 김충혁;김탁용;오용철;최운식;조춘남
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.322-327
    • /
    • 2014
  • Internal corrosion of the distribution line can be detected in order to develop techniques of non-destructive inspection methods that operate only on the metal track eddy current diagnosis is possible by applying the technique investigated. Sensor for the production of a finite element method modeled by using an eddy current sensor, a distribution line by using an accelerated aging samples of sodium hydroxide was prepared. Sheathed cables for internal corrosion studies detected using an eddy current sensor is considered to be possible.

A New Protection Strategy of Impressed Current Cathodic Protection for Ship

  • Oh, Jin-Seok;Kim, Jong-Do
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.592-596
    • /
    • 2004
  • Corrosion is never avoided in the use of materials with various environments. The underwater hull is normally protected against rusting by several coatings of anti-corrosive paint. The purpose of ICCP(Impressed Current Cathodic protection) system is to eliminate the rusting or corrosion, which occurs on metal immersed in seawater. The anode of ICCP system is controlled by an external DC source with converter. The function of anode is to conduct the protective current into seawater. The proposed algorithm includes the harmonic suppression control strategy and the optimum protection strategy and has tried to test the requirement current density for protection, the influence of voltage, the protection potential. This paper was studied the variation of potential and current density with environment factors, time and velocity, and the experimental results will be explained.

Validation of Some Protection Guidelines for Neighboring Pipelines against Fault Currents from Power Transmission Tower

  • Lee, Seong-Min;Song, Hong-Seok;Kim, Young Geun
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.77-81
    • /
    • 2007
  • Fault current can be discharged from power transmission tower due to lightning or inadvertent contact of crane, etc. Pipelines in proximity to either the source of the ground fault or the substation grounding grid may provide convenient conductive path for the fault current to travel. Inappropriate measures to the neighboring pipelines against the fault current may cause severe damages to the pipes such as coating breakdown, arc burn, puncture, loss in wall thickness, or brittle heat-affected zone. Like inductive and conductive AC coupling, steadily induced fault current right after the coating breakdown can lead to corrosion of the pipeline. In this work, some protection guidelines against fault currents used in the field have been validated through the simulation and analytical method.

철근 콘크리트 구조물용 다기능 멀티센서의 부식 모니터링에 관한 연구: Part 1 (A Study on the Corrosion Monitoring of Multi-functional Sensors for Reinforced Concrete Structures: Part 1)

  • 진충국;정진아;경은진
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.270-274
    • /
    • 2012
  • This study represents the result of corrosion monitoring on reinforced concrete specimens by means of multi-functional corrosion monitoring sensors. To confirm the effectiveness of the sensors, eight different kinds of condition were adopted. Test factors were corrosion potential, current, corrosion rate, resistivity, and temperature, which were monitored with the sensors. Through this study, judging corrosion of steel in concrete with single corrosion factor such as corrosion potential was difficult, because many other factors can have an influence on the reaction of corrosion. By using three different kinds of sensors, it could enhance the accuracy of corrosion monitoring.

지하매설 금속구조물의 전식방지 국내 현황 (Domestic Conditions on the Electrolytic Corrosion Protection of Buried Metallic Structures)

  • 이현구;하태현;최정희;정호성;배정효
    • 한국가스학회지
    • /
    • 제13권2호
    • /
    • pp.1-6
    • /
    • 2009
  • 누설전류는 의도된 회로 이외의 경로로 흐르는 전류를 말하며, 일반적으로 도시철도의 급전 시스템은 레일을 부극선으로 사용하기 때문에 레일이 대지와 완벽하게 절연되어 있지 않다면 레일을 통해 흐르는 전류의 일부는 누설전류로 땅속을 흐르게 된다. 이때 토양을 통해 누설 전류가 유출되는 레일과 지하매설 금속구조물에서 전식이 발생하게 된다. 본 논문에서는 국내 도시철도 운행지역 인근 지하매설 금속구조물의 전식방지 현황을 설문조사를 통하여 조사하였다.

  • PDF

직류 접지극의 전식보호 방법 연구 (Research on Protection Method for Ground Electrode of DC Systems from Corrosion)

  • 정우용;김효성
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.90-95
    • /
    • 2021
  • In contrast to AC grounding systems, the ground electrode in DC systems continuously maintains positive or negative polarity. Ground electrodes with (+) polarity proceeds by oxidation reaction. Thus, the DC current should flow opposite to the polarity of the leakage current flowing through the (+) ground electrode by using a compensation electrode, and the current flowing through the (+) ground electrode can be 0A. However, according to protecting the (+) ground electrode, the compensation electrode corrodes and gets damaged. Thus, the (+) ground electrode must be protected from corrosion, and the service life of the compensation electrode must be extended. As an alternative, the average value of the current flowing through the compensation electrode should be equal with the value of the leakage current flowing through the (+) ground electrode by using the square waveform. Throughout the experiment, the degree of corrosion on the compensation electrode is analyzed by the frequency of the compensation electrode for a certain time. In the experiment, the frequencies of the square waveform are considered for 0.1, 1, 10, 20, 50, 100 Hz, and 1 kHz. Through experiments and analysis, the optimal frequency for reducing the electrolytic damage of the (+) electrode and compensation electrode in an LVDC grounding environment is determined.