• Title/Summary/Keyword: corrosion assessment

Search Result 291, Processing Time 0.029 seconds

An Approach to Risk Assessment of City Gas Pipeline (도시가스 배관의 위험평가 방법론 제시)

  • Park Kyo-Shik;Lee Jin-Han;Jo Young-Do;Park Jin-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.33-40
    • /
    • 2003
  • In this work, a novel approach was introduced to assess cost of loss resulting from risk as well as to help deciding inspection period through quantifying risk. In order to quantifying risk of city gas pipeline, frequency and consequence analysis were required. The main causes of city gas accident were analyzed to be digging, external corrosion, ground movement, and equipment failure. Tools to evaluate frequency of each cause was also suggested. Among city gas accidents, fire damage is the dominant one and mainly discussed; fatality, burning injury, and damage to building were estimated using the consequence model suggested. By combining frequency and consequence analysis, evaluating cost of risk management together with calculating example. This work could be applicable for city gas companies to plan how to manage risk most effectively.

  • PDF

A Study on the Integrity Assessment of Bare Concrete Bridge Deck based on the Attenuation of Radar Signals (레이더 신호의 감쇠특성을 고려한 일체식 콘크리트 교량 바닥판의 상태평가 방법 고찰)

  • Rhee, Ji-Young;Choi, Jae-Jin;Kim, Hong-Sam;Park, Ko-Eun;Choi, Myeong-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.84-93
    • /
    • 2016
  • The signal characteristic of radar wave on concrete decks is determined by the attenuation of the radar due to the conversion of EM(Electromagnetic) energy to thermal energy through electrical conduction, dielectric relaxation, scattering, and geometric spreading. In this study, it is found that the attenuation of radar signal received on top rebars in bare deck concrete with 2 way travel time shows a general decreasing linear trend because of its same relative permittivity and conductivity. The radar signal after depth-normalization, can then be interpreted as being principally influenced by the content of chlorides penetrating cover concrete, which caused corrosion of rebars in bridge decks.

Mechanical Properties Assessment of Steels Obtained from an Aged Naval Ship (노후 함정 강재의 기계적 특성 평가)

  • Sang-Hyun Park;Young-Sik Jang;Su-Min Lee;Sang-Rai Cho;Sang Su Jeon;Ju Young Hwang;Nam-Ki Baek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.65-75
    • /
    • 2023
  • Ships operated at sea for a long time are subjected to various kinds of loads, which may cause various types of damage. Such damages will eventually reduce the strength of hull structures. Therefore, it is necessary to estimate and evaluate the residual strength and remaining fatigue life of aging ships in order to secure structural safety, establish a reasonable maintenance plan, and make a judgment of life extension. For this purpose, the corrosion damage and local denting damage should be measured, fatigue damage estimation should be performed, and material properties of aged steel should be identified. For this study, in order to investigate the mechanical properties of aged steel, steel plates were obtained from a naval ship that reached the end of her life span. The specimens were manufactured from the obtained steel plates, and static and dynamic tensile tests, fatigue tests, and metallographic tests were performed. The mechanical properties obtained from the aged steel plates were compared with those of new steel plates to quantify the aging effect on the mechanical properties of marine steel materials.

System Configuration of Ultrasonic Nuclear Fuel Cleaner and Quantitative Weight Measurement of Removed CRUD (초음파 핵연료 세정장비의 시스템 구성과 제거된 크러드의 정량적 무게 측정법)

  • Jung Cheol Shin;Hak Yun Lee;Un Hak Seong;Yeong Jong Joo;Yong Chan Kim;Wook Jin Han
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Crud is a corrosion deposit that forms in equipments and piping of nuclear reactor's primary systems. When crud circulates through the reactor's primary system coolant and adheres to the surface of the nuclear fuel cladding tube, it can lead to the Axial Offset Anomaly (AOA) phenomenon. This occurrence is known to potentially reduce the output of a nuclear power plant or to necessitate an early shutdown. Consequently, worldwide nuclear power plants have employed ultrasonic cleaning methods since 2000 to mitigate crud deposition, ensuring stable operation and economic efficiency. This paper details the system configuration of ultrasonic nuclear fuel cleaning equipment, outlining the function of each component. The objective is to contribute to the local domestic production of ultrasonic nuclear fuel cleaning equipment. Additionally, the paper introduces a method for accurately measuring the weight of removed crud, a crucial factor in assessing cleaning effectiveness and providing input data for the BOA code used in core safety evaluations. Accurate measurement of highly radioactive filters containing crud is essential, and weighing them underwater is a common practice. However, the buoyancy effect during underwater weighing may lead to an overestimation of the collected crud's weight. To address this issue, the paper proposes a formula correcting for buoyancy errors, enhancing measurement accuracy. This improved weight measurement method, accounting for buoyancy effects in water, is expected to facilitate the quantitative assessment of filter weights generated during chemical decontamination and system operations in nuclear power plants.

Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis - (고밀도 폴리에틸렌 융착부에 대한 단기간 파손 평가법 개발 - 한계하중 적용 -)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae;Kim, Jong-Sung;Kim, Jeong-Hyeon;Jang, Chang-Heui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.405-413
    • /
    • 2015
  • In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.

Influence of Carbonation on the Chloride Diffusion in Concrete (탄산화 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Oh, Byung-Hwan;Lee, Sung-Kyu;Lee, Myung-Kue;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.829-839
    • /
    • 2003
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation but the future studies for combined environment will assure the precise assessment.

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

Effect of Micro-Cracks on Chloride Ions Penetration of Concrete: Phonomenological Model (미세균열이 콘크리트의 염소이온 침투에 미치는 영향: 현상학적 모델)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Over the past few decades, considerable numbers of studies on the durability of concrete have been carried out extensively. A lot of improvements have been achieved especially in both measuring techniques as well as modeling of ionic flows. However, the majority of these researches have been performed on sound uncracked concrete, although most of in-situ concrete structures have more or less micro-cracks. It is only recent approach that the attention has shifted towards the influence of cracks and crack width on the penetration of chloride into concrete. The penetration of chlorides into concrete through the cracks can make a significant harmful effect on reinforcement corrosion. On the other hand, a general acceptable crack width of 0.3 mm has been recognized for keeping the serviceability of concrete structures in accordance with a lot of codes. However, there seems to be rare established description to explain the critical crack width in terms of the durability of concrete. To make a bad situation worse, there is little agreement on critical crack width among a few of literatures for this issue. Critical crack width is still controversial problem. Nevertheless, since the critical crack width is important key for healthy assessment of concrete structures exposed to marine environment, it should be established. The objective of this study is to define a critical crack width. The critical crack width in this study is designed for a threshold crack width, which contributes to the first variation of chloride diffusion coefficient in responsive to the existence of cracks. A simple solution is formulated to realize the quantifiable parameter, chloride diffusion coefficient for only cracked zone excluding sound concrete. From the examination on the trend of chloride diffusion coefficient of only cracked zone for various crack widths, a critical crack width is founded out.

A Survey on Asbestos Exposure Possibility in Indoor and Outdoor Environments of Childcare Centers (어린이집 실내·외 석면노출 가능성 조사에 관한 연구)

  • Park, Whame;Son, Byeung-Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.122-129
    • /
    • 2014
  • Objectives: Because of its properties such as resistance to heat, chemicals and corrosion; tensile strength; sound absorption; and affordable price, asbestos has been widely used as a building material, fire resistant and retardant, thermal and heat insulator, soundproofing material, and electrical insulation. Since the prolonged inhalation of asbestos can cause serious illnesses such as lung cancer, mesothelioma, and asbestosis after an incubation period of 20 to 40 years, the mineral was classified as a Group 1 carcinogen by the International Agency for Research on Cancer, an intergovernmental agency forming part of the World Health Organization. Children and infants are more at risk than are adults if they are exposed to carcinogens, due to aweaker immunity that has not yet been fully developed. Most childcare centers are operated all day and children tend to spend a great amount of time in the centers. This is why it is important for them to be systematically isolated from environments that may expose them to asbestos. Materials: In order to understand both indoor and outdoor hazards to which children may have been exposed, the study focused on actual surveys of asbestos used in childcare centers, paying special attention to slate-roofed buildings in the vicinity of the centers. Results: A survey of a total of 211 childcare centers showed that the buildings of 18.1% of the centers contained asbestos, with 60.53% of the material being found in classroom ceilings. "Tex" was the most used material for ceilings, making up 89.47% of all ceilings. An outdoor survey showed that childcare centers in Daegu Metropolitan City had an average of 143 slate-roof buildings within a distance of 1km. Conclusions: Buildings housing mainly toddlers, children, teenagers and others more vulnerable to the toxicity of asbestos are not subject to asbestos investigation by law. A legal and practical basis for asbestos control is required for such buildings. In particular, housing materials which contain asbestos in day care centers require asbestos control. GIS should be used to identify the location of buildings with slate roofing materials in the vicinity of daycare centers in order to gauge toxicity of exposure to asbestos caused by potential asbestos friability possibility in outdoor conditions.