• Title/Summary/Keyword: corrosion area

Search Result 571, Processing Time 0.033 seconds

An Evaluation on Adhesive Weight of Incoming Salt by Paint used for Finishing Material of Steel (강재의 마감재로 사용된 도료별 비래염분 부착량 평가)

  • Cho, Gyu-Hwan;Lee, Young-Jun;Kim, Woo-Jae;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.177-178
    • /
    • 2013
  • Steel structures of the seaside area are naturally led to surface corrosion due to incoming salt. Signature measures for this are to replace steel with steel material with a high corrosion-resistance and to block salt and other deteriorative factors beforehand through finishing work such as surface coating. However, the variety in steel materials, finishing type, and construction methods makes adhesive weight of incoming salt different depending on each type. For this research, measurement results derived from an enhancement experiment on artificial incoming salt adhesive to 4 steel finishing types and 2 material types identified a difference of adhesive weight by each sampler.

  • PDF

Effect on the corrosion of steel by unburnt carbon in fly ash cement mortar (미연탄소분이 플라이 애시 시멘트 모르타르내 철근의 부식에 미치는 영향)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Lee, Hyun-Goo;Kim, Dae-Kyeong;Ha, Yoon-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1416-1417
    • /
    • 2006
  • The increase of carbon contents in fly ashes accelerate the corrosion of steel embedded in ordinary portland cement mortar. Cement losses its identity of colour, when the % of carbon is increased. More than 60[%] area was rusted, when carbon content is increased beyond 8[%] for the exposure period of one year. Comparable corrosion rate with OPC was obtained up to 6[%] carbon level only. The tolerable limit of replacement for various admixed carbon system under aggressive alternate wetting and drying condition with 3[%] NaCl was found to be 6 to 8[%].

  • PDF

Surface Characteristics of Stainless Steel Wire for Dental and Medical Use (치과 및 의료용 스테인리스강선의 표면특성)

  • 최한철;고영무
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.4
    • /
    • pp.339-346
    • /
    • 2003
  • Stainless steel wire has been used in industry, dental and medical parts. Especially, it has been used widely for the dental orthodontic materials. The orthodontic wire requires good mechanical properties, such as elastic strength, combined with a high resistance to corrosion. To increase elastic strength and good corrosion resistance, drawing methods(one-step and two-step drawing) have been used and the electrochemical characteristics of drawed wire have been researched using potentiodynamic method in 0.9%NaCl and field emission scanning electron microscope. The one-step drawed wire showed the formation of rough surface. The hardness and tensile strength of two-step drawed wire increased. For the case of two-step drawed wire, the corrosion resistance and pitting potential increased compared with one-step drawed wire due to the drawing induced small surface roughness, such as scratch. The passivation and active current density decreased as the reduction in area for drawing increased.

Self-healing Coatings for Corrosion Protection: A Review of Recent Advances (자기치유 부식방지 코팅의 최근 동향)

  • Park, Byoung Kyeu
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.5
    • /
    • pp.244-251
    • /
    • 2014
  • In recent years, self-healing coatings have been the subject of increasing interest. The ability of such coatings to self-repair local damage caused by external factors is a major factor contributing to their attractiveness. Metals are extensively used in modern society in a range of applications from infrastructure to aircraft to consumer products. The protection of metals, primarily from corrosion has been an active area of materials science for many years. The aim of this review is the demonstration for recent progress achieved in the development of carrier-based self-healing coatings for the protection of metals. This review mainly covers the reports published after 2010. Two main types of carriers for corrosion inhibitors or healing agents-polymer capsules and porous composite inorganic nanoparticles-are described.

Ultimate flexural and shear capacity of concrete beams with corroded reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.347-363
    • /
    • 2007
  • Assessment of structural behaviour of corrosion affected structures is an important issue, which would help in making certain decisions pertaining to the inspection, repair, strengthening, replacement and demolition of such structures. The paper presents formulations to predict the loss of weight and the loss of cross-sectional area of the reinforcing bar undergoing corrosion based on the earlier study carried out by the present authors (Bhargava et al. 2006). These formulations have further been used to analytically evaluate the ultimate bending moment and ultimate shear force capacity of the corroded concrete beams. Results of the present study indicate that, a considerably good agreement has been observed between the experimental and the analytically predicted values for the weight loss and reduction in radius of the corroded reinforcing bars. A considerably good agreement has also been observed between the experimental and the analytically predicted values of ultimate bending moment and ultimate shear force capacity for the corroded concrete beams.

Metal Corrosion Mechanism by Sulfate-reducing and Iron-oxidizing Bacteria in Saline System and its Optimal Inactivation (염수계 철산화균 및 황환원균에 의한 금속 부식 및 최적 제어 방안)

  • Sung, Eun-Hae;Han, Ji-Sun;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.798-807
    • /
    • 2008
  • Due to economic impairment derived from metal corrosion of pumping station installed around coastal area, it was needed for related cause-effect to be investigated for understanding practical corrosion behavior and providing proper control. This research was thus carried out to determine whether the microbe can influence on metal corrosion along with its control in the laboratory. For this study, groundwater was sampled from the underground pump station(i.e. I Gas Station) where corrosion was observed. Microbial diversity on the samples were then obtained by 16S rDNA methods. From this, microbial populations showing corrosion behaviors against metals were reported as Leptothrix sp.(Iron oxidizing) and Desulfovibrio sp.(Sulfur reducing) Iron oxidizing bacteria were dominantly participating in the corrosion of iron, while sulfate reducing bacteria were more preferably producing precipitate of iron. In case of galvanized steel and stainless steel, iron oxidizing bacteria not only enhanced the corrosion, but also generated its scale of precipitate. Sulfate reducing bacteria had zinc steel corroded greater extent than that of iron oxidizing bacteria. In the inactivation test, chlorine or UV exposure could efficiently control bacterial growth. However as the inactivation intensity being increased beyond a threshold level, corrosion rate was unlikely escalated due to augmented chemical effect. It is decided that microbial corrosion could be differently taken place depending upon type of microbes or materials, although they were highly correlated. It could be efficiently retarded by given disinfection practices.

Suggestion of Deterioration Curve for New-type Coating on Atmospheric Environment by Acceleration Corrosion Test (부식촉진 실험을 통한 대기환경에서 신설 도장계의 노화곡선 제안)

  • Jeong, Young-Soo;Kim, Min-Jeong;Jeon, Seok-Hyeon;Ahn, Jin-Hee;Kim, In-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.75-83
    • /
    • 2019
  • In this study, to propose the deterioration curves of urethane, ceramic, polysiloxane and fluorocarbon coating for the steel bridge, an accelerated corrosion tests were carried out. The each coating system wes applied on the top of the specimens, and circular initial defects were introduced with different diameters with 0.5, 1.0, 3.0, 5.0 mm. An accelerated corrosion test condition was used to simulate severe corrosive environment depending on ISO 20340. The deterioration curve of each coating type was evaluated based on deteriorated area from the circular defects. In order to evaluate the coating service life of installed steel bridge using deterioration curve, the acceleration coefficient was calculated at correlation between ISO 20340 and corrosivity categories by ISO 9223 based on field corrosion rate. From test results, the propagation rate of coating deterioration area was different to diameter of circular defects. In case of urethane coating, the coating service lifes of 3% deterioration area was evaluated in 31.8, 15.8, 9.9 and 3.9 years with C2, C3, C4 and C5 category.