• Title/Summary/Keyword: corroded columns

Search Result 13, Processing Time 0.025 seconds

Experimental and numerical studies on the behaviour of corroded cold-formed steel columns

  • Nie, Biao;Xu, Shanhua;Zhang, Haijiang;Zhang, Zongxing
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.611-625
    • /
    • 2020
  • Experimental investigation and finite element analysis of corroded cold-formed steel (CFS) columns are presented. 11 tensile coupon specimens and 6 stub columns of corroded CFS that had a channel section of C160x60x20 were subjected to monotonic tensile tests and axial compression tests, respectively. The degradation laws of the mechanical properties of the tensile coupon specimens and stub columns were analysed. An appropriate finite element model for the corroded CFS columns was proposed and the influence of local corrosion on the stability performance of the columns was studied by finite element analysis. Finally, the axial capacity of the experimental results was compared with the predictions obtained from the existing design specifications. The results indicated that with an increasing average thickness loss ratio, the ultimate strength, elastic modulus and yield strength decreased for the tensile coupon specimens. Local buckling deformation was not noticeable until the load reached about 90% of the ultimate load for the non-corroded columns, while local buckling deformation was observed when the load was only 40% of the ultimate load for the corroded columns. The maximum reduction of the ultimate load and critical buckling load was 57% and 81.7%, respectively, compared to those values for the non-corroded columns. The ultimate load of the columns with web thickness reduced by 2 mm was 53% lower than that of the non-corroded columns, which indicates that web corrosion most significantly affects the bearing capacity of the columns with localized corrosion. The results predicted using the design specifications of MOHURD were more accurate than those predicted using the design specifications of AISI.

Experimental study on durability of strengthened corroded RC columns with FRP sheets in tidal zone of marine environment

  • Kashi, Amin;Ramezanianpour, Ali Akbar;Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • The main objective of this paper was to illuminate the effect of marine environmental condition on durability of reinforced concrete (RC)-corroded columns strengthened with carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) layers. Small-scale columns were prepared and corroded by an accelerated corrosion process. After strengthening, compressive strength tests were carried out on control and weathered specimens. In this research, a marine simulator was designed and constructed similar to the tidal zone of marine environment in south of Iran which was selected as a case study in this research. Mechanical properties of wrapped specimens were studied after placing them inside the simulator for 3000 hours. Marine environment decreased ultimate strength by 4.5% and 26.3% in CFRP and GFRP-wrapped columns, respectively. In some corroded-columns, strengthening was carried out after replacing damaged cover by self-compacted mortar. In this method, by confining with one layer of CFRP and GFRP, 4.2% and 22.4% reduction in ultimate strength was observed, respectively, after exposure. Furthermore, the elastic-brittle behavior has been verified in this retrofit method. Also results of tension tests revealed, the ultimate tensile strength was degraded by 2% and 28.8% in CFRP and GFRP sheets, respectively, after applying marine exposure.

Strut-and-tie model for shear capacity of corroded reinforced concrete columns

  • Tran, Cao Thanh Ngoc;Nguyen, Xuan Huy;Nguyen, Huy Cuong;Vu, Ngoc Son
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • An analytical model is developed in this paper to predict the shear capacity of reinforced concrete (RC) columns with corroded transverse reinforcements. The shear strength model for corroded RC columns is proposed based on modifying the existing strut-and-tie model, which considers the deformational compatibility between truss and arch mechanisms. The contributions to the shear strength from both truss and arch mechanisms are incorporated in the proposed model. The effects of corrosion level of transverse reinforcements are considered in the proposed model through the minimum residual cross-sectional area of transverse reinforcements and the reduction of concrete compressive strength for the cover area. The shear strengths calculated from the developed model are compared with the experimental results from Vu's study (2017), which consisted of RC columns with corroded transverse reinforcements showing shear failure under the cyclic loading. The comparison results indicate satisfactory correlations. Parametric studies are conducted based on the developed shear strength model to explore the effects of column axial loading, aspect ratios, transverse reinforcements and the corrosion levels in transverse reinforcements to the shear strength of RC columns with corroded transverse reinforcements.

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Load carrying capacity of deteriorated reinforced concrete columns

  • Tapan, Mucip;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.473-490
    • /
    • 2009
  • This paper presents a new methodology to evaluate the load carrying capacity of deteriorated non-slender concrete bridge pier columns by construction of the full P-M interaction diagrams. The proposed method incorporates the actual material properties of deteriorated columns, and accounts for amount of corrosion and exposed corroded bar length, concrete loss, loss of concrete confinement and strength due to stirrup deterioration, bond failure, and type of stresses in the corroded reinforcement. The developed structural model and the damaged material models are integrated in a spreadsheet for evaluating the load carrying capacity for different deterioration stages and/or corrosion amounts. Available experimental and analytical data for the effects of corrosion on short columns subject to axial loads combined with moments (eccentricity induced) are used to verify the accuracy of proposed model. It was observed that, for the limited available experimental data, the proposed model is conservative and is capable of predicting the load carrying capacity of deteriorated reinforced concrete columns with reasonable accuracy. The proposed analytical method will improve the understanding of effects of deterioration on structural members, and allow engineers to qualitatively assess load carrying capacity of deteriorated reinforced concrete bridge pier columns.

An Experimental Study on Evaluation of Structural Performance on Corroded Reinforced Concrete Columns (철근이 부식된 철근콘크리트 기둥의 구조성능 평가에 대한 실험적 연구)

  • Won, Jong-Ho;Han, Nam-Hee;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.711-717
    • /
    • 2000
  • This paper presents an experimental study on evaluation of structural performance on corroded reinforced concrete columns under only axial load, combined axial load and lateral load. This test was carried on the twenty-six reinforced concrete columns with $150\times150\times800$mm size subjected to combined axial load and lateral load. Effects of key variables such as the corrosion level, the number of hoop, the corrosion of hoop are studied in this program. The results of this study show that the capacity of column axial force was decreased as corrosion level was increased, especially, rapid development was shown after 10% corrosion level and the maximum moment capacity of column was shown at corrosion level 1.2%, while rapid decrease was shown after 4.3% corrosion level. Also we found that influence of corrosion was decreased to number of tie bar was increased.

  • PDF

Deterioration of Concrete Columns under Sea-Water and Strengthening Analysis (해수중 콘크리트 기둥의 열화 및 보강성능해석)

  • 김규엽;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1169-1174
    • /
    • 2001
  • In this study, the behavior of deteriorated concrete columns under sea-water before and after strengthening with glass fiber composite and the change of behavior by the deterioration of strengthening material are analyzed. In the analysis, the characteristics of concrete deteriorated in sea-water, preloading effect, and corrosion of steel are considered. The result of analysis is verified by the comparison with the experimental data. Using constitutive equations of the concrete and corroded steel, load-moment interaction curves of both deteriorated and strengthened concrete column are derived.

  • PDF

Square CFST columns under cyclic load and acid rain attack: Experiments

  • Yuan, Fang;Chen, Mengcheng;Huang, Hong
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.171-183
    • /
    • 2019
  • As China's infrastructure continues to grow, concrete filled steel tubular (CFST) structures are attracting increasing interest for use in engineering applications in earthquake prone regions owing to their high section modulus, high strength, and good seismic performance. However, in a corrosive environment, the seismic resistance of the CFST columns may be affected to a certain extent. This study attempts to investigate the mechanical behaviours of square CFST members under both a cyclic load and an acid rain attack. First, the tensile mechanical properties of steel plates with various corrosion rates were tested. Second, a total of 12 columns with different corrosion rates were subjected to a reversed cyclic load and tested. Third, comparisons between the test results and the predicted ultimate strength by using four existing codes were carried out. It was found that the corrosion leads to an evident decrease in yield strength, elastic modulus, and tensile strain capacity of steel plates, and also to a noticeable deterioration in the ultimate strength, ductility, and energy dissipation of the CFST members. A larger axial force ratio leads to a more significant resulting deterioration of the seismic behaviour of the columns. In addition, the losses of both thickness and yield strength of an outer steel tube caused by corrosion should be taken into account when predicting the ultimate strength of corroded CFST columns.

Seismic behaviour of RC columns with welded rebars or mechanical splices of reinforcement

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.;Konstantinidis, Dimitrios
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.297-306
    • /
    • 2019
  • The extension of existing RC buildings is a challenging process, which requires efficient connection between existing and new materials to guarantee load transferring between the lap-spliced longitudinal columns' reinforcement. Therefore, the length of the columns' starter bars is a crucial factor, which decisively affects the seismic response of the new columns. In particular, when the length of the starter bars is short, then the length of the lap splices of reinforcement is inadequate to ensure load transfer between steel bars and concrete, with an indisputable detrimental impact on the seismic behaviour of the columns. Moreover, in most of the existing RC buildings the column starter bars are of particularly short length, while they have probably been bent, cut or corroded. In the present study, the effectiveness of both welded rebar and mechanical splices of reinforcement in ensuring load transferring between the starter bars and the longitudinal reinforcement of the new column was experimentally evaluated. Four cantilever column subassemblages were constructed and subjected to earthquake-type loading. Three of the specimens were used to examine different types of shielded metal arc welding (SMAW), while in the fourth subassemblage mechanical splices were tested. The hysteretic response of the columns was evaluated and compared to the behaviour of a fifth specimen with continuous reinforcement, tested by Kalogeropoulos and Tsonos (2019). Test results clearly demonstrated that the examined types of SMAW were equally satisfactory in ensuring the ductile seismic performance of the columns, while the mechanical splices found to be more susceptible to exhibit slipping of the bars.

An Experimental Study on Evaluation of Axially Compressive Buckling Strength of Corroded Temporary Steel (부식 손상된 가시설 강재의 축압축 좌굴강도 추정에 관한 실험적 연구)

  • Kim, In Tae;Lee, Myoung Jin;Shin, Chang Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.135-146
    • /
    • 2011
  • Steel structures have been generally painted to prevent corrosion damage. However, the painted film is deteriorated with increase in service life, and then corrosion damage resulting in cross sectional area occurs on steel surface. As a result, the buckling strength of steel structures can be decreased due to the corrosion damages. The evaluation method of the axial buckling strength of columns about a variety of section shapes and supporting conditions have been presented, but evaluation method of buckling strength about irregular nonprismatic columns is not established. In this study, the axial buckling strength of corroded steels was evaluated based on the buckling test results of corroded steel specimens that were cut off at a temporary steel structure. The corroded specimens were picked up total 10 specimens according to various slenderness ratio from the web of a temporary structure's main beam. The length of specimens is 200, 300, 400, 500 and 600mm respectively. The rust productions were removed by the chemical treatment. Then, the surface geometry was measured at intervals of $1{\times}1mm$ by using the optical 3D digitizing system, and the residual thickness of the specimens was calculated. The axial buckling test was performed on 10 corroded specimens and 12 non-corroded specimens under the fixed-fixed support condition. From the test results, the effect of corrosion damages on axial buckling load was investigated. Regardless of corrosion damage degree, the axial buckling strength of corroded specimens and non-corroded specimens was evaluated identically by using minimum average residual thickness or average residual thickness to minus its standard deviation. Reasonable measuring intervals of residual thickness was proposed by using the results to apply for practical works.