• Title/Summary/Keyword: corresponding principle

Search Result 247, Processing Time 0.025 seconds

A METHOD OF COMPUTING THE CONSTANT FIELD OBSTRUCTION TO THE HASSE PRINCIPLE FOR THE BRAUER GROUPS OF GENUS ONE CURVES

  • Han, Ilseop
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1431-1443
    • /
    • 2016
  • Let k be a global field of characteristic unequal to two. Let $C:y^2=f(x)$ be a nonsingular projective curve over k, where f(x) is a quartic polynomial over k with nonzero discriminant, and K = k(C) be the function field of C. For each prime spot p on k, let ${\hat{k}}_p$ denote the corresponding completion of k and ${\hat{k}}_p(C)$ the function field of $C{\times}_k{\hat{k}}_p$. Consider the map $$h:Br(K){\rightarrow}{\prod\limits_{\mathfrak{p}}}Br({\hat{k}}_p(C))$$, where p ranges over all the prime spots of k. In this paper, we explicitly describe all the constant classes (coming from Br(k)) lying in the kernel of the map h, which is an obstruction to the Hasse principle for the Brauer groups of the curve. The kernel of h can be expressed in terms of quaternion algebras with their prime spots. We also provide specific examples over ${\mathbb{Q}}$, the rationals, for this kernel.

Investigation of Thermophysical Properties of the Kerosene Using the Surrogate Model Fuel at Supercritical Conditions (초임계 영역에서 대체 모델 연료를 이용한 케로신의 열역학적 상태량 연구)

  • Kim, Kuk-Jin;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.823-833
    • /
    • 2010
  • For the study of thermophysical properties of kerosene for the liquid rocket and aviation fuels, the surrogate models are investigated. The density distributions based on the real gas equations of state(Soave modification of Redlich-Kwong and Peng-Robinson equation of state) and NIST SUPERTRAPP(extended corresponding state principle) are compared with the previous experimental results at supercritical conditions. The error range of thermophysical properties analyzed for the surrogate models as well. Peng-Robinson equation of state and extended corresponding state principle are especially accurate for the hydrocarbon fuels but the appropriate surrogate models need to be chosen to the operation conditions such as pressure and temperature.

An Analysis of Discourses on Interpreting and Applying the Principle of Provenance in Archival Organization (기록관리 원칙의 해석과 적용에 관한 담론 분석 출처주의를 중심으로)

  • Seol, Moon-won
    • The Korean Journal of Archival Studies
    • /
    • no.52
    • /
    • pp.59-117
    • /
    • 2017
  • This study aims to logically investigate the changing interpretation and implementation of the principle of provenance by using an argument model for discourse analysis. First, it divides the history of discourses on the principle from the Dutch Manual publication of 1989 up to the present into four areas, which includes establishing, diffusing, transforming, and expanding or deconstructing, and articulates the core discourses of each. Second, it designs the argument model for analyzing the discourses on the principle by applying Toulmin's argument model and Dunn's policy argument model. Third, it selects the articles and books that cover the core discourses of the principle, and analyzes their contents in consideration of the argument model. Fourth and finally, it presents four argument models corresponding to each area of the discourses.

Heat Transfer Analysis of Cylindrical Asphalt Specimen using DEM (DEM을 이용한 아스팔트 혼합물의 열전도 예측)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.19 no.4
    • /
    • pp.37-44
    • /
    • 2017
  • PURPOSES : Conductive and convective heat transfer simulations for an asphalt mixture were made by using discrete element method (DEM) and similarity principle. METHODS : In this research, virtual specimens composed of discrete element method particles were generated according to four different predetermined particle size distribution curves. Temperature variations of the four different particles for a given condition were estimated and were compared with measurements and analytical solutions. RESULTS : The virtual specimen with mixed particles and with the smallest particle show very good agreement with laboratory test results and analytical solutions. As particle size decreases, better heat transfer simulation can be performed due to smaller void ratio and more contact points and areas. In addition, by utilizing the similarity principle of thermal properties and corresponding time unit, analytical time can be drastically reduced. CONCLUSIONS : It is concluded that the DEM asphalt mixture specimens with similarity principle could be used to predict the temperature variation for a given condition. It is observed that the void ratio has critical effect on prediction of temperature variation. Comparing the prediction for a 4 mm particle specimen with a mixed particle specimen, it is also concluded that predicting the mixed particle specimen temperature is much more efficient considering the number of particles that are directly associated with computational time in DEM analysis.

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

Spectral-Reflectance Estimation Using Adaptive Principle Component Analysis in Similar Color Region (유사 색상 영역의 적응적인 주성분 분석을 이용한 표면분광반사율 추정)

  • 권오설;이철희;이호근;하영호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1767-1770
    • /
    • 2003
  • This paper proposes an algorithm that can reduce the estimation error of surface spectral-reflectance(SR) when using a conventional 3-band RGB camera. In the proposed method, the estimation error is reduced by using adaptive principle components (PCs) for each color region. To build an adaptive set of PCs, n SR populations are organized for n PC sets using the Lloyd quantizer design algorithm. The Macbeth Color Checker is utilized for the initial representative SR values for 1485 Munsell color chips as the total color population, then the Munsell chips arc divided into subsets with a set of corresponding adaptive PCs organized for each subset.

  • PDF

High Temperature Thermodynamics of Aqueous electrolyte Solutions (전해질 수용액의 고온 열역학)

  • Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.63-67
    • /
    • 2018
  • Gibbs free energy is a measure of relative stability among substances. Since the nature of the ions in aqueous solution is diverse, their thermodynamic data at extensive experimental conditions is scarce. In this work, the calculation procedure was introduced to obtain the absolute and conventional standard molar enthalpies and entropies of hydration of ions from the standard enthalpies and entropies of formation of hydrated ions. The application of correspondence principle to estimate thermodynamic data at high temperature was explained.

Analysis of linear viscoelastic problems using boundary element method (경계요소법을 사용한 선형 점탄성문제의 해석)

  • 심우진;곽병만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.322-330
    • /
    • 1987
  • Isotropic linear viscoelasticity problems are analyzed numerically in time domain by Boundary Element Method with quadratic isoparametric boundary elements. Viscoelastic fundamental solutions are newly derived by using the elastic-viscoelastic correspondence principle and corresponding boundary integral equations are also presented. Numerical results of two examples are compared with the derived exact solutions to verify the accuracy and validity of the method. A detailed study on the accuracy of displacement and stress in terms of time integration step is given.

A Study on the Stochastic Finite Element Method for Dynamic Problem of Nonlinear Continuum

  • Wang, Qing;Bae, Dong-Myung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.1-15
    • /
    • 2008
  • The main idea of this paper introduce stochastic structural parameters and random dynamic excitation directly into the dynamic functional variational formulations, and developed the nonlinear dynamic analysis of a stochastic variational principle and the corresponding stochastic finite element method via the weighted residual method and the small parameter perturbation technique. An interpolation method was adopted, which is based on representing the random field in terms of an interpolation rule involving a set of deterministic shape functions. Direct integration Wilson-${\theta}$ Method was adopted to solve finite element equations. Numerical examples are compared with Monte-Carlo simulation method to show that the approaches proposed herein are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.