• Title/Summary/Keyword: corresponding principle

Search Result 247, Processing Time 0.03 seconds

Che-Yong(體用) Logic and Research Methodology

  • YongNam Yun
    • Development and Reproduction
    • /
    • v.26 no.4
    • /
    • pp.183-190
    • /
    • 2022
  • Today's Eastern philosophers try to use the formal logic organized by Aristotle, saying that there was no logic in the East. This researcher found that Confucius and other Asians used Che-Yong logic. The Che-Yong logic is based on the Che-Yong law, which is a natural law. The Che-Yong law consists of the Che-Yong principle and the Hyeon-Mi principle. The Hyeon-Mi principle is that if there is an appearance on the outside, there is a corresponding cause in it. The Che-Yong principle is that the highest common cause of various appearances is Che, and the Che grows and changes on its own to become a Yong. Identifying Che and predicting Yong is Che-Yong logic. Here, I'd like to introduce Che-Yong logic and suggest a new research methodology to apply it.

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

Best Invariant Estimators In the Scale Parameter Problem

  • Choi, Kuey-Chung
    • Honam Mathematical Journal
    • /
    • v.13 no.1
    • /
    • pp.53-63
    • /
    • 1991
  • In this paper we first present the elements of the theory of families of distributions and corresponding estimators having structual properties which are preserved under certain groups of transformations, called "Invariance Principle". The invariance principle is an intuitively appealing decision principle which is frequently used, even in classical statistics. It is interesting not only in its own right, but also because of its strong relationship with several other proposal approaches to statistics, including the fiducial inference of Fisher [3, 4], the structural inference of Fraser [5], and the use of noninformative priors of Jeffreys [6]. Unfortunately, a space precludes the discussion of fiducial inference and structural inference. Many of the key ideas in these approaches will, however, be brought out in the discussion of invarience and its relationship to the use of noninformatives priors. This principle is also applied to the problem of finding the best scale invariant estimator in the scale parameter problem. Finally, several examples are subsequently given.

  • PDF

Hamilton제s Principle for the Free Surface Waves of Finite Depth (유한수심 자유표면파 문제에 적용된 해밀톤원리)

  • 김도영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.96-104
    • /
    • 1996
  • Hamilton's principle is used to derive Euler-Lagrange equations for free surface flow problems of incompressible ideal fluid. The velocity field is chosen to satisfy the continuity equation a priori. This approach results in a hierarchial set of governing equations consist of two evolution equations with respect to two canonical variables and corresponding boundary value problems. The free surface elevation and the Lagrange's multiplier are the canonical variables in Hamilton's sense. This Lagrange's multiplier is a velocity potential defined on the free surface. Energy is conserved as a consequence of the Hamiltonian structure. These equations can be applied to waves in water of finite depth including generalization of Hamilton's equations given by Miles and Salmon.

  • PDF

OPTIMAL PROBLEM OF REGULAR COST FUNCTION FOR RETARDED SYSTEM

  • Jong-Yeoul Park;Jin-Mun Jeong;Young-Chel Kwun
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.115-126
    • /
    • 1998
  • We study the optimal control problem of system governed by retarded functional differential $$ x'(t) = A_0 x(t) + A_1 x(t - h) + \\ulcorner\ulcorner\ulcorner_{-h}^{0} a(s)A_2 x(t + s)ds + B_0 u(t) $$ in Hilbert space H. After the fundamental facts of retarded system and the description of condition so called a weak backward uniqueness property are established, the technically important maximal principle and the bang-bang principle are given. its corresponding linear system.

  • PDF

DEMI-CLOSED PRINCIPLE AND WEAK CONVERGENCE PROBLEMS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Chang, Shih-Sen;Cho, Yeol-Je;Haiyun Zhou
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1245-1260
    • /
    • 2001
  • A demi-closed theorem and some new weak convergence theorems of iterative sequences for asymptotically nonexpansive and nonexpansive mappings in Banach spaces are obtained. The results presented in this paper improve and extend the corresponding results of [1],[8]-[10],[12],[13],[15],[16], and [18].

  • PDF

A Temporal Finite Element Method for Elasto-Viscoplasticity through the Extended Framework of Hamilton's Principle (확장 해밀턴 이론에 근거한 탄점소성 시스템의 시간유한요소해석법)

  • Kim, Jin-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • In order to overcome the key shortcoming of Hamilton's principle, recently, the extended framework of Hamilton's principle was developed. To investigate its potential in further applications especially for material non-linearity problems, the focus is initially on a classical single-degree-of-freedom elasto-viscoplastic model. More specifically, the extended framework is applied to the single-degree-of-freedom elasto-viscoplastic model, and a corresponding weak form is numerically implemented through a temporal finite element approach. The method provides a non-iterative algorithm along with unconditional stability with respect to the time step, while yielding whole information to investigate the further dynamics of the considered system.

CONTRACTION MAPPING PRINCIPLE AND ITS APPLICATION TO UNIQUENESS RESULTS FOR THE SYSTEM OF THE WAVE EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.197-203
    • /
    • 2008
  • We show the existence of the unique solution of the following system of the nonlinear wave equations with Dirichlet boundary conditions and periodic conditions under some conditions $U_{tt}-U_{xx}+av^+=s{\phi}_{00}+f$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, ${\upsilon}_{tt}-{\upsilon}_{xx}+bu^+=t{\phi}_{00}+g$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, where $u^+$ = max{u, 0}, s, t ${\in}$ R, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator. We first show that the system has a positive solution or a negative solution depending on the sand t, and then prove the uniqueness theorem by the contraction mapping principle on the Banach space.

Robust inference with order constraint in microarray study

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.559-568
    • /
    • 2018
  • Gene classification can involve complex order-restricted inference. Examining gene expression pattern across groups with order-restriction makes standard statistical inference ineffective and thus, requires different methods. For this problem, Roy's union-intersection principle has some merit. The M-estimator adjusting for outlier arrays in a microarray study produces a robust test statistic with distribution-insensitive clustering of genes. The M-estimator in conjunction with a union-intersection principle provides a nonstandard robust procedure. By exact permutation distribution theory, a conditionally distribution-free test based on the proposed test statistic generates corresponding p-values in a small sample size setup. We apply a false discovery rate (FDR) as a multiple testing procedure to p-values in simulated data and real microarray data. FDR procedure for proposed test statistics controls the FDR at all levels of ${\alpha}$ and ${\pi}_0$ (the proportion of true null); however, the FDR procedure for test statistics based upon normal theory (ANOVA) fails to control FDR.