• Title/Summary/Keyword: corner vortex

Search Result 52, Processing Time 0.019 seconds

Geometry Effects of Capillary on the Evaporation from the Meniscus (모세관 단면 형상에 따른 계면 및 증발 특성)

  • Choi, Choong-Hyo;Jin, Songwan;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.313-319
    • /
    • 2007
  • The effect of capillary cross-section geometry on evaporation is investigated in terms of the meniscus shape, evaporation rate and evaporation-induced flow for circular, square and rectangular cross-sectional capillaries. The shapes of water and ethanol menisci are not much different from each other in square and rectangular capillaries even though the surface tension of water is much larger than that of ethanol. On the other hand, the shapes of water and ethanol menisci are very different from each other in circular capillary. The averaged evaporation fluxes in circular and rectangular capillaries are measured by tracking the meniscus position. At a given position, the averaged evaporation flux in rectangular capillaries is much larger than that in circular capillary with comparable hydraulic diameter. The flow near the evaporating meniscus is also measured using micro-PIV, so that the rotating vortex motion is observed near the evaporating ethanol and methanol menisci except for the case of methanol meniscus in rectangular capillary. This difference is considered to be due to the existence of corner menisci at the four comers.

A Study on Flow Characteristics of Lid-Driven Square Cavity (정방형 벨트구동 캐비티의 흐름특성에 관한 연구)

  • 김진구;조대환;김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.430-436
    • /
    • 1997
  • Time-dependent Flow characteristics of a two-dimensional lid-driven square cavity flow of six high Reynolds numbers, $10^4 2{\times}lO^4., 3{\times}l0^4, 5{\times}lO^4, 7.5{\times}lO^4$ and $10^5$ were investigated. A convection conservative difference scheme based upon SOLA to maintain the nearly 2nd-order spatial accuracy was adopted on irregular grid formation. Irregular grid number is $80{\times}80$ and its minimum size is about 1/400 of the cavity height(H) and its maximum is about 1/53 H. The result shows that at Re= $10^4$, periodic migration of small eddies appearing in corner separation region and its temporal sinusoidal fluctuation are represented. And another critical Reynolds number which shows the commencement of flow randomness emerging from the periodic fluctuation is assumed to be around Re= $1.5{\times}10$. At five higher Reynolds numbers ($2{\times}lO^4., 3{\times}l0^4, 5{\times}lO^4, 7.5{\times}lO^4$ and $10^5$), an organizing structure of four consecutive vortices similar to a Moffat vortex at two lower corners is revealed from time-mean flow patterns.

  • PDF

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES))

  • 황철홍;이창언
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.79-88
    • /
    • 2006
  • In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.

CFD Analysis of Two-Dimensional Floating Body with Moon Pool under Forced Heave Motion (문풀을 가지는 2차원 부유체의 강제 상하동요에 대한 CFD 해석)

  • Heo, Jae-Kyung;Park, Jong-Chun;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.36-46
    • /
    • 2011
  • A two-dimensional floating body with a moon pool under forced heave motion, including a piston mode, is numerically simulated. A dynamic CFD simulation is carried out to thoroughly investigate the flow field around a two-dimensional moon pool over various heaving frequencies. The numerical results are compared with experimental results and a linear potential program by Faltinsen et al. (2007). The effects of vortex shedding and viscosity are investigated by changing the corner shapes of the floating body and solving the Euler equation, respectively. The flow fields, including the velocity, vorticity, and pressure fields, are discussed to understand and determine the mechanisms of wave elevation, damping, and sway force.

A Study on Ventilation Characteristics of Cargo-oil pump room (화물유 펌프실의 환기특성에 관한 연구)

  • 박찬수;조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.134-141
    • /
    • 2000
  • In this study, a scaled model chamber was built to investigate ventilation characteristics of the Under floor Air-conditioning System. Experimental study was performed in model for cargo-oil pump room with inlet and outlet by visualization equipment with laser apparatus. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000) which adopted two-frame grey-level cross correlation algorithm. The flow pattern reveals the large scale counterclockwise forced-vortex rotation from upside louver to lower scupper toward diagonal corner and also found small eddies at bottom layer

  • PDF

Aerodynamic Investigation of Three-Dimensional Wings in Ground Effect for Aero-levitation Electric Vehicle (공기부상 전동 운행체의 지면효과를 받는 3차원 날개에 대한 공력해석 연구)

  • Oh H. J.;Seo J. H.;Moon Y. J.;Cho J. S.;Yoon Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.196-201
    • /
    • 2004
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various ground clearances and wing spans at the Reynolds number of $2\times10^6$. Numerical results show that a sizeable three-dimensional flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and that this is conjectured a primary cause for the high lift-to-drag(L/D) reduction rate of the main wing, when the wing span is decreased. Improvements on L/D ratios of the wings with small spans are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction.

  • PDF

Boundary Layer Separation Control with Fairing at the Junction of 3D Wings Under Ground Effect (페어링을 이용한 지면효과를 받는 3차원 날개 접합부의 경계층 박리 제어)

  • Cho Ji. H.;Moon Young. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.57-64
    • /
    • 2005
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various fairing shapes at the junctions of 3D Wings. Numerical results show that a sizeable three-dimensional comer flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and also that this is predicted the main cause of the high lift-to-drag(L/D) reduction rate of the main wing. To avoid the comer flow separation, the main idea of this study is to reduce the cross section gradient of the comer flow tube near the trailing edge for various fairing shapes. Improvements on L/D ratios of the wings are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction when the cross section gradient is changed slowly at the trailing edge.

  • PDF

Local Convective Mass Transfer and Flow Structure Around a Circular Cylinder with Annular Fins (환상핀이 부착된 원봉 주위의 3차원 박리 유동구조 및 물질전달 특성 해석)

  • 박태선;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2132-2146
    • /
    • 1991
  • Extensive experiments were carried out to investigate the mass transfer and flow structures around a circular cylinder with annular fins in crossflow. The naphthalene sublimation method was employed to measure the circumferential and longitudinal variations of mass transfer from the circular cylinder between annular fins and H is the height of the fin from the cylinder surface. A remarkable enhancement of mass transfer due to the horseshoe vortices was observed near the corner junction between the annular fin and circular cylinder. The present results indicate that the local circumferential Sherwood number shows the higher values on the front stagnation point. The maximum augmentation of mass transfer rate at the center of cylinder is found near L/H-0.15 due to the separation bubble along the annular fins. The secondary flows, which are the corner vortices V2 and V3 near the end wall of the annular fin, are fairly predicted from the distributions of local Sherwood number in the spanwise direction. The average Sherwood number of overall surface at L/H=0.15 is larger 2.0 times than that of without annualr fins. The correlations of total average mass transfer rate with L/H and Re$_{L}$ can also be obtained.d.

Flow Analysis of POSRV Subsystem of Standard Korean Nuclear Reactor (한국 표준형 원전의 POSRV 하부 배관 유동해석)

  • Kwon, Soon-Bum;Kim, In-Goo;Ahn, Hyung-Joon;Lee, Dong-Eum;Baek, Seung-Cheol;Lee, Byeong-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1464-1471
    • /
    • 2003
  • In order to investigate the flows with shock wave in branch, 108$^{\circ}$ elbow and T-junction of the IRWST system of standard Korean nuclear reactor, detail time dependent behaviors of unsteady flow with shock wave, vortex and so on are obtained by numerical method using compressible three-dimensional Navier-Stokes equations. At first, the complex flow including the incident and reflected shock waves, vortex and expansion waves which are generated at the corner of T-junction is calculated by the commercial code of FLUENT6 and is compared with the experimental result to obtain the validation of numerical method. Then the flow fields in above mentioned units are analyzed by numerical method of [mite volume method. In numerical analysis, the distributions of flow properties with the moving of shock wave and the forces acting on the wall of each unit which can be used to calculate the size of supporting structure in future are calculated specially. It is found that the initial shock wave of normal type is re-established its type from an oblique one having the same strength of the initial shock wave at the 4 times hydraulic diameters of downstream from the branch point of each unit. Finally, it is turned out that the maximum force acting on the pipe wall becomes in order of the T-junction, 108$^{\circ}$ elbow and branch in magnitude, respectively.