• Title/Summary/Keyword: corner effect

Search Result 316, Processing Time 0.026 seconds

Geochemical Study of Black Shale in Uhangri Formation, Haenam Area (해남지역(海南地域)에 분포(分布)된 우항리층내(牛項里層內) 흑색(黑色)셰일의 유기지화학적(有機地化學的) 연구(硏究))

  • Lee, Dai Sung;Yun, Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.12 no.4
    • /
    • pp.207-221
    • /
    • 1979
  • The studied area occupies the southern part of Haenam peninsula located in the southwestern corner of Korea. The stratigraphic sequences of the area are grouped into following three units in ascending order. (1) Late Cretaceous sedimentary rocks of Uhangri Formation which consist of the alternative beds of black shales and tuffaceous sediments, Hwangsan acidic fine grained tuffs and Jindo rhyolite flows. (2) Late Cretaceous biotite granite and acidic porphyries which intruded the Late Cretaceous sedimentary rocks. (3) Tertiary(?) pitchstone. The study purposes to delineate any of geochemical aspects on the deposition of the sequences, the average amounts of organic materials and the effect to the maturation of hydrocarbonization which has been occured by the intrusives. Sixty nine black shale samples were collected from Uhangri Formation in the northern and southern coasts of the peninsula. Organic carbons, total extracted organic matters and hydrocarbons were mainly determined by the Soxhlet extraction method, together with C-H-N elemental analyses. Based on the field and laboratory studies, the following interpretations have been obtained. (1) The paleohydrostatic condition of the sedimentation which took place was relatively calm and stable to delineate a lacustrine environment. (2) The amounts of organic material were more or less constant throughout the period of the deposition of the sediments. (3) The degree of hydrocarbonization of the Uhangri Formation in the northern coast was taken place higher than that in the southern coast due to the differences of thermal effect by the biotite granite which is assumed to be as a heat source in the area. Among the northern coast, some black shales in Uhangri and Mogsam areas which had been under the most moderate temperature environment snow symptomatic oily material, whereas, those in Sinseongri area do not, which were presumably to be intensive thermal alteration by the later acidic porphyries.

  • PDF

Assesment of pCO2 in the Yellow and East China Sea Using an Earth System Model (지구시스템모형을 이용한 황동중국해 이산화탄소분압 분포 특성 평가)

  • Park, Young-Gyu;Choi, Sang-Hwa;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.447-455
    • /
    • 2011
  • Using results from an earth system model, the distribution of partial pressure of $CO_2$ ($pCO_2$) in surface seawater over the East China Sea is investigated. In this area $pCO_2$ shows minimum along the edge of the continental break along the path of the Taiwan-Tsushima Current System. Apparently modelled chlorophyll is also great along the current but the maximum of the chlorophyll and the minimum of $pCO_2$ do not coincide suggesting that the primary production is not the main cause of the $pCO_2$ minimum. As we move toward the Yellow Sea from the Kuroshio area the temperature decreases so that the $pCO_2$ becomes smaller. If we move further toward the Yellow Sea beyond the Taiwan-Tsushima Current System, alkalinity starts to drop substantially to intensify $pCO_2$ while overcoming the effect of decreasing temperature and salinity. Thus $pCO_2$ minimum occurs along the Taiwan-Tsushima Current System. Of course, the primary production lower $pCO_2$ during spring when it is high but the effect is local. Near the Yangtze river mouth and northeastern corner of the Yellow Sea the fresh water input is large enough and dissolved inorganic carbon (DIC) becomes low enough so that $pCO_2$ becomes lower again.

A Study on sub 0.1$\mu\textrm{m}$ ULSI Device Quality Using Novel Titanium Silicide Formation Process & STI (새로운 티타늅 실리사이드 형성공정과 STI를 이용한 서브 0,1$\mu\textrm{m}$ ULSI급 소자의 특성연구)

  • Eom, Geum-Yong;O, Hwan-Sul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.1-7
    • /
    • 2002
  • Deep sub-micron bulk CMOS circuits require gate electrode materials such as metal silicide and titanium silicide for gate oxides. Many authors have conducted research to improve the quality of the sub-micron gate oxide. However, few have reported on the electrical quality and reliability of an ultra-thin gate. In this paper, we will recommend a novel shallow trench isolation structure and a two-step TiS $i_2$ formation process to improve the corner metal oxide semiconductor field-effect transistor (MOSFET) for sub-0.1${\mu}{\textrm}{m}$ VLSI devices. Differently from using normal LOCOS technology, deep sub-micron CMOS devices using the novel shallow trench isolation (STI) technology have unique "inverse narrow-channel effects" when the channel width of the device is scaled down. The titanium silicide process has problems because fluorine contamination caused by the gate sidewall etching inhibits the silicide reaction and accelerates agglomeration. To resolve these Problems, we developed a novel two-step deposited silicide process. The key point of this process is the deposition and subsequent removal of titanium before the titanium silicide process. It was found by using focused ion beam transmission electron microscopy that the STI structure improved the narrow channel effect and reduced the junction leakage current and threshold voltage at the edge of the channel. In terms of transistor characteristics, we also obtained a low gate voltage variation and a low trap density, saturation current, some more to be large transconductance at the channel for sub-0.1${\mu}{\textrm}{m}$ VLSI devices.

Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material (소성가공시 재료유동에 대한 수치해석 및 모델실험)

  • 김헌영;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 1993
  • The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behavior in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method.

Development of three-dimensional thermal oxidation simulator (3차원 산화 시뮬레이터 개발)

  • 이제희;윤상호;광태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.38-45
    • /
    • 1997
  • In this paper, the three-dimensional stress effect of thermal oxide is simulated. We developed a three-dimensional finite element numerical simulator including three-dimensional adaptive mesh generator that is able to refine and eliminate nearby moving boundary of oxide, and oxidation solver with stress model. To investigate the behavior of thermal oxidation the simulations of thermal oxidation for island and hole structures are carried out assuming silicon wafer of <100> direction, temperature of $1000^{\circ}C$, oxidation time of 60min, wet ambient, initial oxide thickness of $300\AA$, and nitride thickness of $2, 000\AA$. The main effect of deformation at the corner area of oxide is due to distribution of oxidant, but the deformation of oxide is affected by the stressin theoxide. In the island structure which is the structure mostly covered with nitride and a coner is opended to oxidation, oxidation is reduced at the coner by compressive stress. In the hole structure which is the structure mostly opedned to oxide and a coner is convered with nitride, however, oxidation is increased at the coner by tensile stress.

  • PDF

A Study on the Sloshing Reduction of a Cargo Fuel Tank with Baffle (배플을 적용한 Cargo용 연료탱크 내부의 슬로싱 저감 연구)

  • Yoon, Bo-Hyun;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1074-1083
    • /
    • 2010
  • Recently sloshing that fluid in fuel tank is undulating by the external force during motion of automobile, ship and aircraft is greatly affecting by damaging the inside of structure. It's most important to precisely analyze the behavior of fluid by computational fluid dynamics for minimizing the effect of sloshing for the loaded fuel. This study characterized volume of fluid and pressure according to the length and number of vertical baffle and horizontal baffle in fuel tank for Kia Frontier cargo and analyzed for reduction of sloshing during driving on corner and hill by using ADINA-CFD. As a result of analysis, the optimum length for sloshing reduction shows 0.19 m for vertical baffle and 0.08 m for horizontal baffle. And it shows that vertical baffle is better for the reduction effect of sloshing during driving on corners, on the other hand, horizontal baffle is effective and stable during driving on hills.

A study on Improvement of sub 0.1$\mu\textrm{m}$VLSI CMOS device Ultra Thin Gate Oxide Quality Using Novel STI Structure (STI를 이용한 서브 0.1$\mu\textrm{m}$VLSI CMOS 소자에서의 초박막게이트산화막의 박막개선에 관한 연구)

  • 엄금용;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.729-734
    • /
    • 2000
  • Recently, Very Large Scale Integrated (VLSI) circuit & deep-submicron bulk Complementary Metal Oxide Semiconductor(CMOS) devices require gate electrode materials such as metal-silicide, Titanium-silicide for gate oxides. Many previous authors have researched the improvement sub-micron gate oxide quality. However, few have reported on the electrical quality and reliability on the ultra thin gate oxide. In this paper, at first, I recommand a novel shallow trench isolation structure to suppress the corner metal-oxide semiconductor field-effect transistor(MOSFET) inherent to shallow trench isolation for sub 0.1${\mu}{\textrm}{m}$ gate oxide. Different from using normal LOCOS technology deep-submicron CMOS devices using novel Shallow Trench Isolation(STI) technology have a unique"inverse narrow-channel effects"-when the channel width of the devices is scaled down, their threshold voltage is shrunk instead of increased as for the contribution of the channel edge current to the total channel current as the channel width is reduced. Secondly, Titanium silicide process clarified that fluorine contamination caused by the gate sidewall etching inhibits the silicidation reaction and accelerates agglomeration. To overcome these problems, a novel Two-step Deposited silicide(TDS) process has been developed. The key point of this process is the deposition and subsequent removal of titanium before silicidation. Based on the research, It is found that novel STI structure by the SEM, in addition to thermally stable silicide process was achieved. We also obtained the decrease threshold voltage value of the channel edge. resulting in the better improvement of the narrow channel effect. low sheet resistance and stress, and high threshold voltage. Besides, sheet resistance and stress value, rms(root mean square) by AFM were observed. On the electrical characteristics, low leakage current and trap density at the Si/SiO$_2$were confirmed by the high threshold voltage sub 0.1${\mu}{\textrm}{m}$ gate oxide.

  • PDF

Numerical Analysis of Thermal Effect on Axial Load and Pile Settlements in PHC Energy Piles (PHC 에너지파일의 열응력에 따른 축하중-침하 수치해석)

  • Lee, Dae-Soo;Min, Hye-Sun;Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.5-17
    • /
    • 2013
  • This study investigates the effect of thermal stress on axial load and pile settlement of PHC energy piles. A series of numerical analyses were performed by controlling major influencing parameters such as pile arrangement, pile spacing, end-bearing condition, soil condition and pile cap stiffness. It is found that the characteristics of pile-load transfer are significantly affected by seasonal operation mode (i.e., cooling and heating) throughout the year. Also, the axial load under thermal loading increases with increasing the pile spacing. The settlement of the pile in sand is larger than that in clay because of the thermal stress generated. It is also found that thermal stress highly influences on the end-bearing pile, corner pile and rigidity of pile cap.

Study on the Current Spreading Effect of Blue GaN/InGaN LED using 3-Dimensional Circuit Modeling (3차원의 회로 모델링을 이용한 청색 GaN/InGaN LED의 전류 확산 효과에 관한 연구)

  • Hwang, Sung-Min;Shim, Jong-In
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • A new and simple method of 3-dimensional circuit modeling and analysis is proposed and verified experimentally for the first time by determining 3-dimensional current flow and 2-dimensional light distribution in blue InGaN/GaN multi-quantum well (MQW) light emitting diode (LED) devices. Circuit parameters of the LED consist of the resistance of the metallic film and epitaxial layer, and the intrinsic diode which represents the active region emitting the light. The circuit parameters are extracted from the transmission line model (TLM) and current-voltage relation. We applied the >> proposed method and extracted circuit parameters to obtain the light emission pattern in a top-surface emitting-type LED. The current spreading effect is analyzed theoretically and quantitatively with a variation of the resistance of metallic and epitaxial layers. The emitting-light distribution of the fabricated blue LED showed a good agreement with the analyzed result, which shows the dark emission intensity at the corner of the p-electrode.

Analysis of the Interaction Between Hypersonic Free Stream and Side Jet Flow Using a DSMC Method (직접모사법을 이용한 극음속 대기 유동과 측면 제트의 상호 작용 해석)

  • Kim, Min-Gyu;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • The interaction between hypersonic free stream and side jet flow at high altitudes is investigated by using the direct simulation Monte Carlo (DSMC) method. In order to alleviate the difficulty associated with the large density difference between the free stream and the side jet flow and to simulate the two flows simultaneously, a weighting factor technique is applied. For validation, the corner flow over a pair of plates perpendicularly attached is calculated with and without a side jet, and the results are compared with experiment. For a more realistic configuration, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet is injected into the free stream and the effect on the aerodynamic force and moment is observed at various flow angles. The lambda shock effect and the wake structure are studied in terms of the surface pressure differential. A higher interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.