• Title/Summary/Keyword: core sediments

Search Result 219, Processing Time 0.026 seconds

Phytolith Analysis of Sediments in the Lake Gyeongpo, Gangneung, Korea and Climatic Change in the Holocene (경포호의 식물규소체(phytolith) 분석과 Holocene 기후변화)

  • Yoon, Soon-Ock;Kim, Hyo-Seon;Hwang, Sang-Ill
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.6
    • /
    • pp.691-705
    • /
    • 2009
  • Phytolith analysis was made on a 660cm core from Lake Gyeongpo in the East Sea of Korean Peninsula to clarify the environmental change including climate and agricultural characteristics during the Holocene. From the results of phytolith analysis, six phytoliths assemblage zone(PAZ) were recognized from the base to the surface. PAZ I around 5,000 yr BP suggests the transition from the warm and dry to the cool and wet climatic conditions. The climate of PAZ II(ca. 4,000-2,000 BP) was kept on warm, but repeated between dry and wet conditions. PAZ III(2,000~1,000 yr BP) suggests the expansion of agricultural activities under the warm and humid climatic conditions due to the significant phytoliths production of Paniceae and Oryza sativa. While PAZ IV(1,000~500 yr BP) indicates very cool and dry conditions, PAZ V and IV suggest the warm-dry and cool-humid climatic conditions, respectively. Similar to the results of pollen analysis in the lake, the agricultural activities were recognized by PAZ III around 2,000 yr BP from the results of phytolith analysis, and the rice cultivations such as Oryza sativa have been expanded since 2,000 yr BP or later.

Development of GIS based Marine Mineral Resource Information System for Managing Marine Exploration Data (GIS 기반의 해양탐사자료 관리를 위한 해양광물자원정보시스템 설계 및 구축)

  • Kim, Dong-Il;Kim, Kye-Hyun;Park, Yong-Hyun
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.19-28
    • /
    • 2011
  • Recently, the interests of marine mineral resources has been increasing from the depletion of land resources around the world and many countries are involving in marine exploration work. South Korea is also currently performing exploration work to estimate the marine mineral resources around the Korean Peninsula. However, massive amounts of marine exploration data accumulated from the long-term exploration work have not been systematically managed. The data have been managed by the file based system instead of commercial database. The aim of this study is to construct GIS-based Marine Mineral Resource Information System using a spatial database for the core sediments of the marine exploration data. For constructing such DB system, GIS-based data items were classified, and a database was designed using relational database model. The database was constructed using commercial DBMS(Database Management System), Oracle. Also, necessary functions of the system were defined for the effective use of database based on users' requirement analysis. The GIS-based Marine Mineral Resource Information System has enabled to support the systematic management of the marine exploration data. Furthermore, it is expected that this spatial database will be useful in estimating the reserves of the mineral resources and provide valuable information for economic evaluation. In the future, the application of advanced techniques of spatial analysis and 3-dimensional display function will be required.

Holocene Climate Optimum and environmental changes in the Paju and the Cheollipo areas of Korea (한반도 홀로세 온난기후 최적기 (Holocene Climate Optimum)와 지표환경 변화)

  • Nahm, Wook-Hyun;Lim, Jae-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.15-30
    • /
    • 2011
  • Three sediment cores from two different locations (UJ-03 and UJ-12 cores of valley sediment in Paju area, and CL-4 core of wetland sediment in Cheollipo area) along the western Korean Peninsula yield crucial information on the timing and spatial pattern of century-scale climate changes and subsequent surficial responses during the Holocene. In Paju area, the sediments included abundant coarse-grained sediment (coarse sands and pebbles) from 7100 to 5000 cal. yrBP, total organic carbon (TOC) values showed a marked increase from 5000 to 2200 cal. yrBP, several intermittent depositional layers were observed from 2200 cal. yrBP. In Cheollipo area, lake environment developed from 7360 to 5000 cal. yrBP, the deposition of organic materials increased from 5000 to 2600 cal. yrBP, peatland formed from 2600 cal. yrBP. The two patterns of surficial responses to the climate changes through the Holocene are different to each other. This might be due to the dissimilarity in geomorphic conditions. However, the approximate simultaneity of environmental changes in two areas shows that they both can be correlated to the major climate changes. Two areas which have undergone significant changes indicated that the hydrological factors including precipitation and strength of water flow were most responsible for the landscape and geomorphic evolutions. Although the upwards trend in relative sea-level also played a primary role for environmental changes in coastal area (Cheollipo area), detailed studies have still to be undertaken.

  • PDF

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.

Analysis of Changes in Paleoenvironment using Diatoms from Iselin Bank in the Ross Sea (로스해 Iselin Bank에서 규조를 이용한 고해양 환경변화 해석)

  • Bak, Young-Suk;Kim, Sunghan;Lee, Jae Il;Yoo, Kyu-Cheul;Lee, Min Kyung
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.677-687
    • /
    • 2021
  • In this study, we analyzed diatoms from core RS15-GC41 collected in Iselin Bank, Ross Sea. A total of 24 genera and 35 species of diatoms are identified, and the having valve abundance of diatoms varies from 0.2 to 28.6×106/g. Four diatom assemblage zones are established by the vertical distribution of diatoms, and changed with a cycle of 100 kyrs. RS15-GC41 were deposited over the last 400 kyrs (corresponding to Marine Isotope Stages 1-11). The open-water species Fragilariopsis kerguelensis, Rhizosolenia styliformis, and Thalassionema nitzschioides abundantly occurred in interglacial periods. Whereas, Actinocyclus actinochilus abundantly dominant during the glacial periods. The distribution of these diatoms indicated, it can be seen that the sea-ice extent was larger and lasted longer during MIS 7, 9, and 11 than that of MIS 1, 3, and 5. Moreover, Paralia sulcata was abundantly predominant in MIS 7, 9, and 11; this finding suggests likely indicating that P. sulcata was transported from the coastal/inner shelf area to the study site, during accumulated in the sediments, reworked with the influx of ice-rafted debris by the currents

Effect of Sand Extraction on Meiobenthic Community of Jangbong-do in the Eastern Yellow Sea of Korea (서해 주문도 연안 사질 조하대에서의 해사채취가 중형저서동물 군집에 미치는 영향 연구)

  • Kang, Teawook;Min, Won-Gi;Hong, Jae-Sang;Kim, Dongsung
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.138-152
    • /
    • 2014
  • The objective of the study survey was to determine the effect of marine sand extraction on community composition and rate of recolonization of the meiobenthos following cessation of mining activities. Because of meiobenthic distribution in nature, high abundance, intimate association with sediments, fast reproduction, benthic larva period, sensitivity to pollution and rapid life histories, meiobenthos are widely regarded as ideal organisms to study the potential ecological indicator of natural and anthropogenic stresses. The community structure of meiobenthos was studied at seven stations within sandy tidal and sub tidal zones in Jangbongdo in the Yellow Sea, Korea from Aug. 2006 to Dec. 2007. Meiobenthic samples were collected by three core samples, with a 3.6 cm in diameter, from each sediment sample taken with a Smith-McIntyre Grab. It was found that sand mining often causes complete removal of the sediment and the damage to the habitats of meiobenthos. This study in the effect showed that sand mining resulted in a reduction in total abundance and biomass of meiobenthos in mining area. The finding of this study further showed that initial restoration of abundance and biomass within one year of the cessation of sand mining.

Relationship Between Dinoflagellate Cyst Distribution in Surface Sediments and Phytoplankton Assemblages from Gwangyang Bay, a Southern Coastal area of Korea (한국 남해 연안 광양만 표층 퇴적물의 와편모조류 시스트 분포 특성과 식물플랑크톤 군집과의 비교)

  • 김소영;문창호;조현진
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2003
  • To describe dinoflagellate cysts from Gwangyang Bay, surface sediment samples were collected at 20 sites by the TFO core sampler on 24 August 2001, in coupled with a phytoplankton investigation by surface seawater sampling. More than 17 genera, 36 species of dinoflagellate cysts were Identified from the sediment samples of Gwangyang Bay, consisting of 14 species of gonyaulacoid, 14 species of protoperidinioid, 3 species of diplopsalid, 2 species of gymnodinioid, 1 species of tuberculodinioid and calciodinellid, respectively. Cyst concentrations in Gwangyang Bay varied from 115 to 2,188 cysts/g, and generally increased toward a western part of the study area. The highest cyst concentration was observed at St. 11 located in the northwestern region with 11 genera and 19 species(2,188 cysts/g), while the lowest value with 6 genera and 9 species(115 cysts/g) was observed at St. 3 located in the center of the study area. The predominant dinoflagellate cyst was Spiniferites bulloideus, followed by Alexandrium sp., Brigantedinium simplex and S. delicatus. The motile forms of eight dinoflagellate cysts recorded in the sediment samples were also observed in the seawater: Polykrikos swartzii/kofoidii complex, Scripssiella trochoidea, Protoperidinium claudicans(cyst name: Votadinium spinosum), P. pentagonum(: Trinovantedinium capitatum capitatum), P. conicum(: Selenopemphix quanta), P. leonis(: Quinquecuspis concretum), P. conicoides(: Brigantedinium simplex), Gonyaulax spp.(: Spiniferites spp.). In this study, heterotrophic dinoflagellate cysts show the highest concentration at St. 6 where the highest density of diatoms simultaneously observed from surface water sample. This result suggests that the grazing of heterotrophic dinoflagellates on the diatoms in high concentration caused the higher concentration of heterotrophic dinoflagellate cysts.

SHRIMP U-Pb Zircon Geochronology and Geochemistry of Drill Cores from the Pohang Basin (포항분지 시추 코어시료의 SHRIMP U-Pb 저어콘 연대 및 지구화학)

  • Lee, Tae-Ho;Yi, Keewook;Cheong, Chang-Sik;Jeong, Youn-Joong;Kim, Namhoon;Kim, Myoung-Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.167-185
    • /
    • 2014
  • SHRIMP zircon U-Pb ages and major element and Sr-Nd isotopic compositions were determined for drill cores (374-3390 m in depth) recovered from three boreholes in the Pohonag basin, southeastern Korea. Shallow-seated volcanic rocks and underlain plutonic rocks were geochemically classified as rhyolite and gabbro-granite, respectively. They showed high-K calc-alkaline trends on the $K_2O-SiO_2$ and AFM diagrams. Zircons from volcanic rocks of borehole PB-1 yielded concordia ages of $66.84{\pm}0.66Ma$ (n=12, MSWD=0.02) and $66.52{\pm}0.55Ma$ (n=12, MSWD=0.46). Zircons from volcanic rocks of borehole PB-2 gave a concordia age of $71.34{\pm}0.85Ma$ (n=11, MSWD=0.79) and a weighted mean $^{206}Pb/^{238}U$ ages of $49.40{\pm}0.37Ma$ (n=11, MSWD=1.9). On the other hand, zircons from plutonic rocks of borehole PB-3 yielded weighted mean $^{206}Pb/^{238}U$ ages of $262.4{\pm}3.6Ma$ (n=21, MSWD=4.5), $252.4{\pm}3.6Ma$ (n=8, MSWD=1.9) and $261.8{\pm}1.5Ma$ (n=31, MSWD=1.3). Detrital zircons from the sedimentary strata overlain the volcanic rocks showed a wide age span from Neoproterozoic to Cenozoic, with the youngest population corresponding to $21.89{\pm}1.1Ma$ (n=15, MSWD=0.04) and $21.68{\pm}1.2Ma$ (n=10, MSWD=19). These dating results indicate that the basement of the Pohang basin is composed of Late Permian plutonic rocks and overlain Late Cretaceous to Eocene volcanic sequences. Miocene sediments were deposited in the uppermost part of the basin, possibly associated with the opening of the East Sea. The Sr-Nd isotopic compositions of the Permian plutonic rocks were comparable with those reported from Permian-Triassic granitoids in the Yeongdeok area, northern Gyeongsang basin. They may have been recycled into parts of the Cretaceous-Paleogene magmatic rocks within the Gyeongsang basin.

Distribution Characteristics of Land and River Aggregate Resources in Yeongam Area by Deposition Period (영암지역 육상 및 하천 골재의 퇴적 시기별 분포 특성)

  • Jin Cheul Kim;Sei Sun Hong;Jin-Young Lee;Ju Yong Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.243-251
    • /
    • 2024
  • In this study, a surface geological survey was first conducted to investigate aggregate resources in the Yeongam area of Jeollanam-do, and a drilling survey was conducted in the lower part of the surface, which was difficult to identify through a surface geological survey, to determine the spatial distribution of aggregates. Drilling sites were selected considering the topographical development and Quaternary alluvium characteristics of the study area, and river aggregate drilling surveys were conducted at a total of 5 points and land aggregate drilling surveys were conducted at a total of 28 points. Borehole core sediments were classified into seven sedimentary units to determine whether they could be used as aggregates, and optically stimulated luminescence dating was performed on representative boreholes to measure the depositional period for each sedimentary unit. As a result of the study, most of the Yeongam area had a very wide river basin, so it was estimated that there would be a large amount of aggregate, but the amount of aggregate was evaluated to be very small compared to other cities and counties. Most of the unconsolidated sedimentary layers in the Yeongam area are composed of blue-grey marine clay with a vertical thickness of more than 10 m. The sand-gravel layer corresponding to the aggregate section is distributed in the lower part of the marine clay, thinly covering the bedrock weathering zone. This is because the amount of aggregates themselves is small and most of the aggregates are distributed at a depth of 10 m below the surface, which is currently difficult to develop, so the possibility of developing aggregates is evaluated to be very low. As a result of dating, it can be seen that the blue-grey marine clay layer is an intertidal sedimentary layer formed as the sea level rose rapidly about 10,000 years ago. The deposition process continued from 10,000 years ago to the present, and as a result, a very thick clay layer was deposited. This clay layer was formed very dominantly for about 6,000 to 8,000 years, and the sand-gravel layer in the section where aggregates deposited in the Pleistocene period can exist was measured to have been deposited at about 13.0 to 19.0 ka, and about 50 ka, showing that it was deposited as paleo-fluvial deposits before the marine transgression process.