DOI QR코드

DOI QR Code

SHRIMP U-Pb Zircon Geochronology and Geochemistry of Drill Cores from the Pohang Basin

포항분지 시추 코어시료의 SHRIMP U-Pb 저어콘 연대 및 지구화학

  • Lee, Tae-Ho (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Yi, Keewook (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Cheong, Chang-Sik (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Jeong, Youn-Joong (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Kim, Namhoon (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Kim, Myoung-Jung (Department of Earth and Environmental Sciences, Pukyong National University)
  • 이태호 (한국기초과학지원연구원 환경과학연구부) ;
  • 이기욱 (한국기초과학지원연구원 환경과학연구부) ;
  • 정창식 (한국기초과학지원연구원 환경과학연구부) ;
  • 정연중 (한국기초과학지원연구원 환경과학연구부) ;
  • 김남훈 (한국기초과학지원연구원 환경과학연구부) ;
  • 김명정 (부경대학교 지구환경과학과)
  • Received : 2014.07.03
  • Accepted : 2014.08.25
  • Published : 2014.09.30

Abstract

SHRIMP zircon U-Pb ages and major element and Sr-Nd isotopic compositions were determined for drill cores (374-3390 m in depth) recovered from three boreholes in the Pohonag basin, southeastern Korea. Shallow-seated volcanic rocks and underlain plutonic rocks were geochemically classified as rhyolite and gabbro-granite, respectively. They showed high-K calc-alkaline trends on the $K_2O-SiO_2$ and AFM diagrams. Zircons from volcanic rocks of borehole PB-1 yielded concordia ages of $66.84{\pm}0.66Ma$ (n=12, MSWD=0.02) and $66.52{\pm}0.55Ma$ (n=12, MSWD=0.46). Zircons from volcanic rocks of borehole PB-2 gave a concordia age of $71.34{\pm}0.85Ma$ (n=11, MSWD=0.79) and a weighted mean $^{206}Pb/^{238}U$ ages of $49.40{\pm}0.37Ma$ (n=11, MSWD=1.9). On the other hand, zircons from plutonic rocks of borehole PB-3 yielded weighted mean $^{206}Pb/^{238}U$ ages of $262.4{\pm}3.6Ma$ (n=21, MSWD=4.5), $252.4{\pm}3.6Ma$ (n=8, MSWD=1.9) and $261.8{\pm}1.5Ma$ (n=31, MSWD=1.3). Detrital zircons from the sedimentary strata overlain the volcanic rocks showed a wide age span from Neoproterozoic to Cenozoic, with the youngest population corresponding to $21.89{\pm}1.1Ma$ (n=15, MSWD=0.04) and $21.68{\pm}1.2Ma$ (n=10, MSWD=19). These dating results indicate that the basement of the Pohang basin is composed of Late Permian plutonic rocks and overlain Late Cretaceous to Eocene volcanic sequences. Miocene sediments were deposited in the uppermost part of the basin, possibly associated with the opening of the East Sea. The Sr-Nd isotopic compositions of the Permian plutonic rocks were comparable with those reported from Permian-Triassic granitoids in the Yeongdeok area, northern Gyeongsang basin. They may have been recycled into parts of the Cretaceous-Paleogene magmatic rocks within the Gyeongsang basin.

포항분지 374-3390 m 심도에서 채취한 3개 시추공 코어 시료의 SHRIMP U-Pb 저어콘 연대측정과 함께 주원소 및 Sr-Nd 동위원소 분석을 실시하였다. 주성분 원소 분석 결과 총알칼리-규산 도표에서 천부화산암은 유문암으로, 심부심성암은 반려암과 화강암으로 도시되었으며 AFM 다이아그램에서는 칼크-알칼리 계열의 분화경향을 보인다. $K_2O-SiO_2$ 상관도에 따르면 모두 High-K 영역에 속하며 일부 주성분원소들은 $SiO_2$ 함량에 따른 상관성을 보인다. SHRIMP 저어콘 U-Pb 연대측정 결과 한 시추공의 천부화산암에 대해 $66.84{\pm}0.66Ma$ (n=12, MSWD=0.02)와 $66.52{\pm}0.55Ma$ (n=12, MSWD=0.46)의 일치곡선연령 값을 획득하였으며, 다른 시추공의 화산암에 대해서는 $71.34{\pm}0.85Ma$ (n=11, MSWD=0.79)와 $49.40{\pm}0.37Ma$ (n=11, MSWD=1.9)의 일치곡선연령 값과 가중평균 값을 획득하였다. 또 다른 시추공의 화강암에서 추출한 저어콘은 $261.8{\pm}1.5Ma$(n=31, MSWD=1.3)의 가중평균값을 나타내었고 반려암에서 추출한 저어콘은 조직적 특징에 따라 $262.4{\pm}3.6Ma$ (n=21, MSWD=4.5)와 $252.4{\pm}3.6Ma$ (n=8, MSWD=1.9)의 연대를 보였다. 천부화산암 상부 퇴적암의 연대측정 결과 신원생대에서 신생대까지 다양한 분포를 보였으며 $21.89{\pm}1.1Ma$ (n=15, MSWD=0.04)와 $21.68{\pm}1.2Ma$ (n=10, MSWD=19)의 가장 젊은 일치곡선연령이 구해졌다. 이 연구 결과는 포항분지 심부가 페름기 후기에서 에오세에 이르기까지 비교적 긴 시간에 걸쳐 형성된 심성암 및 화산암체로 구성되어 있으며 그 상위에 아마도 동해확장과 관련되어 마이오세 초기 이후에 퇴적된 지층이 피복하고 있음을 지시한다. 페름기 심부심성암의 전암 $^{87}Sr/^{86}Sr$ 초기치 (0.7034-0.7042)와 ${\varepsilon}_{Nd}$ 초기치 (4.0-5.1)는 비슷한 연대범위를 가지는 영덕 지역의 화강암류와 유사하며 이들 화강암류가 백악기-제3기의 경상분지 화강암 기원물질로 재순환되었을 가능성을 시사한다.

Keywords

References

  1. Bak, Y.S., Lee, J.D. and Yun, H., 1997, Radiolarian faunas from the Hagjeon Formation(Middle Miocene) in the southern Pohang Basin, Korea. Journal of the Paleontological Society of Korea, 13, 137-154.
  2. Cheong, C.S., Kwon, S.T., Kim J.M. and Chang, B.U., 1998, Geochemical and isotopic study of the Onjeongri granite in the northern Gyeongsang basin, Korea: Comparison with Cretaceous to Tertiary granitic rocks in the other part of the Gyeongsang basin and the Inner zone of southwest Japan. Journal of Petrological Society of Korea, 7, 77-97.
  3. Cheong, C.-S., Kwon, S-T. and Sagong, H., 2002, Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea: Implications for the young basement in the East Asian continental margin. Island Arc, 11, 25-44. https://doi.org/10.1046/j.1440-1738.2002.00356.x
  4. Cheong, C.-s., Yi, K., Kim, N., Lee, T.-H., Lee, S.R., Geng, J.-z. and Li, H.-k., 2013, Tracking source materials of Phanerozoic granitoids in South Korea by zircon Hf isotopes. Terra Nova, 25, 228-235. https://doi.org/10.1111/ter.12027
  5. Claoue-Long, J.C., Compston, W., Roberts, J. and Fanning, C.M., 1995, Two Carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and $^{40}Ar/^{39}Ar$ analysis. Special Publications of Society for Sedimentary Geology, 54, 1-27
  6. Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979, The Interpretation of Igneous Rocks. George, Allen and Unwin, London.
  7. Dunham, R.J., 1962, Classification of carbonate rocks according to depositional texture, in W.E. Hamm, ed., Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir 1, 108-121.
  8. Hong, Y.K., 1991, Petrogenetic Modelling of the Vertically Zoned Cretaceous Pohang Epizonal Intrusive rocks, SE Korea. Journal of Geological Society of Korea, 27, 64-86.
  9. Irvine, T.N. and Baragar, W.R.A, 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8, 523-548. https://doi.org/10.1139/e71-055
  10. Kim, B.K., 1965, The stratigraphic and paleontologic studies on the Tertiary (Miocene) of the Pohang area, Korea. Journal of Seoul National University, Science and Technical Series, 15, 32-121.
  11. Kim, B.K., 1970, A Study on the Neogene Tertiary Deposits in Korea. Journal of Geological Society of Korea, 6, 77-96.
  12. Kim, C.-S. and Kim, G.-S., 1997, Petrogenesis of the early Tertiary A-type Namsan alkali granite in the Kyeongsang Basin, Korea. Geoscience Journal, 2, 99-107.
  13. Lee, J. I., Kagami, H. and Nagao, K., 1995, Rb-Sr and KAr age determinations of the granitic rocks in the southern part of the Kyeongsang basin, Korea: Implication for cooling history and evolution of granitic magmatism during late Cretaceous. Geochemical Journal, 29, 363-376. https://doi.org/10.2343/geochemj.29.363
  14. Lee, S.-G., Cho, D.-L., Lee, C.B., Kim, T.G., Song, Y.H. and Lee, J.S., 2007, U-Th zircon age determinations of granodiorite cores from 2300 borehole at Heunghae, Pohang: Study on formation ages of basement of Pohang basin, Korea(abstract), Annual Meeting of the Geological Society of Korea, 100.
  15. Lee, S.-G., Lee, T.J. and Shin, H.J., 2008, Rb-Sr age and its geochemical implication of granitoids cores from deep borehole at Pohang area, Korea. Journal of the Geological Society of Korea, 44, 409-423.
  16. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 4. 77p.
  17. Ludwig, K.R., 2009, SQUID 2: a user's manual. Berkeley Geochronology Center Special Publication, Berkeley, 2. 104p.
  18. Middlemost, E.A.K., 1994, Naming materials in magma/ igneous rock system. Earth Science Review, 37, 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
  19. Naeser, C.W., 1979, Fission-track dating and geologic annealing of fission-tracks. In: Lectrues in Isotope Geology (eds. E. Jger and J.C. Hunziker), Springer-Verlag, 154-169.
  20. Paces, J.B. and Miller, J.D., 1993, Precise U-Pb ages of the Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophygical Reserch., 98, 13997-14013. https://doi.org/10.1029/93JB01159
  21. Peccerillo, A. and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamanonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81. https://doi.org/10.1007/BF00384745
  22. Shibata, K., Uchiumi, S. and Nakagawa, T., 1979, K-Ar age results-1. Bulletin of the Geological Survey of Japan, 30-12, 678-686.
  23. Shin, S.-C., 2013, Revised fission-track ages and chronostratigraphies of the Miocene basin-fill volcanics and basements, SE Korea. Journal of Petrological Society of Korea, 22, 83-115. https://doi.org/10.7854/JPSK.2013.22.2.083
  24. Shin, S-C. and Nishimura, S., 1994, Thermotectonic and sedementation history of the Pohang Basin, Korea assessed by fission track thermochronolgy of a deep vorehole granite. Korean Journal of Petroleum Geology, 2, 9-17.
  25. Um, S.H., Lee, D.W. and Park, B.S., 1964, Geological report of the Pohang Sheet (1:50,000). Geological Survey of Korea, 21.
  26. Yi, K., Cheong, C.-S., Kim, J., Kim, N., Jeong, Y.-J. and Cho, M., 2012, Late Paleozoic to Early Mesozoic arcrelated magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos, 153, 129-141. https://doi.org/10.1016/j.lithos.2012.02.007
  27. Yi, S. and Yun, H., 1995, Miocene calcareous nannoplankton from the Pohang Basin, Korea, Palaeontographica Abteilung B, 237, 113-158.
  28. Yoon, S., 1975, Geology and paleontology of the Tertiary Pohang Basin, Pohang district, Korea, Part I. The Journal of the Geological Society of Korea, 11, 187-214.
  29. Yoon, S., 1979, Neogene molluscan fauna of Korea. Memoir of Geological Society of China, 3, 125-130.
  30. Yoon, S., 1986, Tectonic history of the Tertiary Pohang and Yangnam basins, Korea. In: Nakagawa, H., Kotaka, T., and Takayanagi, Y.(eds.), Essays in Geology, Professor Nobu Kitamura Commemorative Volume. Professor Nobu Kitamura Taikan Kinenjigyo-Kai, Tohoku University, Sendai, 637-644.
  31. Yoon, S., 2010, Tectonic history of the Tertiary Yangnam and Pohang basins, Korea. Journal of the Geological Society of Korea, 46, 95-110.
  32. Yun, H.S., 1986, Amended stratigraphy of the Miocene formations in the Pohang Basin. Journal of the Paleontological Society of Korea, 2, 54-69.
  33. Yun, S.-H., Koh, J.-S., Park, K.-S., Ahn, H.-C., Kim, Y.-I., Yoo, S.-H., Lee, D.-H. and Yun, G.-Y., 2005, Rb-Sr whole-rock isochron age and petrology of the Mt. Geumjeong granit, Busan. Journal of Petrological Society of Korea, 14, 61-72.
  34. Zaun, P.E. and Wagner, G.A., 1985, Fission-track stability in zircons under geological conditions. 10, 303-307.

Cited by

  1. Contrasting source domains for the Phanerozoic granitoids in South Korea revealed by zircon Hf isotopic signatures vol.20, pp.5, 2016, https://doi.org/10.1007/s12303-016-0028-7
  2. 2014, Application of Geochronological and Isotopic Data vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.163
  3. Pleuronichthys sp. Fossils (Pleuronectidae) from the Duho Formation, Pohang Uhyeon-dong in Korea vol.37, pp.3, 2016, https://doi.org/10.5467/JKESS.2016.37.3.133
  4. The tectonic setting of the eastern margin of the Sino-Korean Block inferred from detrital zircon U–Pb age and Nd isotope composition of the Pyeongan Supergroup (upper Palaeozoic – Lower Triassic), Korea vol.156, pp.03, 2019, https://doi.org/10.1017/S0016756817000899
  5. Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: Geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons vol.131, pp.3-4, 2019, https://doi.org/10.1130/B32021.1