• Title/Summary/Keyword: core power distribution

Search Result 295, Processing Time 0.094 seconds

Monte-Carlo Simulation to the Color Distribution within Galactic Globular Clusters

  • Sohn, Young-Jong;Chun, Mun-Suk
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.10a
    • /
    • pp.18-18
    • /
    • 1993
  • According to the CCD photometric studies, the color distributions of globular clusters with collapsed cores, which are characterized by a power law cusp in thier surface brighness pronto, become bluer toward their centers, but this is not the case in the flat core clusters which are fit by the King model. To test the statistical implication of the color distribution within globular clusters, we built the sample dusters which follows the surface brightness pofile of the King model and power law cusp profile with the Sandage's standao luminosity function for M3 and the Salpter's initial mass functions. On the results from simulations based on the uniform random number generation the color gadients within globualr dusters mar be not likely to come from the statistical random distributions of stars but from the dynamical process on the cluster evolution.

  • PDF

Conceptual design of a high neutron flux research reactor core with low enriched uranium fuel and low plutonium production

  • Rahimi, Ghasem;Nematollahi, MohammadReza;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.499-507
    • /
    • 2020
  • Research reactors for radioisotope production, fuel and material testing and research activities are designed, constructed and operated based on the society's needs. In this study, neutronic and thermal hydraulic design of a high neutron flux research reactor core for radioisotope production is presented. Main parameters including core excess reactivity, reactivity variations, power and flux distribution during the cycle, axial and radial power peaking factors (PPF), Pu239 production and minimum DNBR are calculated by nuclear deterministic codes. Core calculations performed by deterministic codes are validated with Monte Carlo code. Comparison of the neutronic parameters obtained from deterministic and Monte Carlo codes indicates good agreement. Finally, subchannel analysis performed for the hot channel to evaluate the maximum fuel and clad temperatures. The results show that the average thermal neutron flux at the beginning of cycle (BOC) is 1.0811 × 1014 n/㎠-s and at the end of cycle (EOC) is 1.229 × 1014 n/㎠-s. Total Plutonium (Pu239) production at the EOC evaluated to be 0.9487 Kg with 83.64% grade when LEU (UO2 with 3.7% enrichment) used as fuel. This designed reactor which uses LEU fuel and has high neutron flux and low plutonium production could be used for peaceful nuclear activities based on nuclear non-proliferation treaty concepts.

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

Advanced Protective Relaying Algorithm by Flux-Differential Current Slope Characteristic for Power Transformer (전력용 변압기용 자속-차전류 기울기 특성에 의한 개선된 보호계전 알고리즘)

  • 박철원;신명철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.382-388
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of power transformers is current percentage differential relaying(PDR). However, the harmonic components could be decreased by magnetizing inrush when there have been changes to the material of iron core or its design methodology. The higher the capacitance of high voltage status and underground distribution, the more differential current includes the second harmonic component during occurrence of an internal fault. Therefore, the conventional harmonic restraint methods need modification. This paper proposes an advanced protective relaying algorithm by fluxt-differential current slope characteristic and trend of voltage and differential current. To evaluate the performance of proposed algorithm, we have made comparative studies of PDR fuzzy relaying, and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP99, and data collection is made through simulation of various internal faults and inrush. As the results of test. the new proposed algorithm was proven to be faster and more reliable.

Numerical Algorithm for Power Transformer Protection

  • Park, Chul-Won;Suh, Hee-Seok;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.146-151
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of the power transformer is current ratio differential relaying (CRDR) with harmonic restraint. However, the second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic restraint CRDR must be modified. This paper proposes a numerical algorithm for enhanced power transformer protection. This algorithm enables a clear distinction regarding internal faults as well as magnetizing inrush and steady state. It does this by analyzing the RMS fluctuation of terminal voltage, instantaneous value of the differential current, RMS changes, harmonic component analysis of differential current, and analysis of flux-differential slope characteristics. Based on the results of testing with WatATP99 simulation data, the proposed algorithm demonstrated more rapid and reliable performance.

Performance Evaluation of Real-time Linux for an Industrial Real-time Platform

  • Jo, Yong Hwan;Choi, Byoung Wook
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.28-35
    • /
    • 2022
  • This paper presents a performance evaluation of real-time Linux for industrial real-time platforms. On industrial platforms, multicore processors are popular due to their work distribution efficiency and cost-effectiveness. Multicore processors, however, are not designed for applications with real-time constraints, and their performance capabilities depend on their core configurations. In order to assess the feasibility of a multicore processor for real-time applications, we conduct a performance evaluation of a general processor and a low-power processor to provide an experimental environment of real-time Linux on both Xenomai and RT-preempt considering the multicore configuration. The real-time performance is evaluated through scheduling latency and in an environment with loads on the CPU, memory, and network to consider an actual situation. The results show a difference between a low-power and a general-purpose processor, but from developer's point of view, it shows that the low-power processor is a proper solution to accommodate low power situations.

A Surge Voltage Distribution Analysis of 2MVA Cast Resin Transformer Winding with FEM Simulation (FEM 시뮬레이션을 이용한 2MVA 몰드변압기 권선간 써지전압 분배 해석 기법 연구)

  • Jang, Hyeong-Taek;Shin, Pan-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.15-21
    • /
    • 2011
  • This paper presents an analyzing method of the capacitance of the power transformer for initial voltage distribution and insulation design. When a high incoming surge voltage is accidently occurred in windings of transformer, it does not distribute equally in the windings. This phenomenon makes electric field concentration and the insulating material could be break. Initial voltage distribute mostly depends on capacitances between winding to winding or winding to core in the transformer. If the C network can be structuralized into the equivalent circuit model and be calculated each capacitance element value by circuit analysis and FEM(Finite Element Method) simulation program, the transformer designer could know the place where the structure is to be modified or the insulation to be reinforced. This method quickly provides the data of the voltage distribution in each winding to the designer.

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

Channel characteristics of multi-path power line using a contactless inductive coupling unit (비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성)

  • Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.799-804
    • /
    • 2016
  • Broadband powerline communication (BPLC) uses distribution lines as a medium for achieving effective bidirectional data communication along with electric current flow. As the material characteristics of power lines are not good at the communication channel, the development of power line communication (PLC) systems for internet, voice, and data services requires measurement-based models of the transfer characteristics of the network suitable for performance analysis by simulation. In this paper, an analytic model describing a complex transfer function is presented to obtain the attenuation and path parameters for a multipath power line model. The calculated results demonstrated frequency-selective fading in multipath channels and signal attenuation with frequency, and were in good agreement with the experimental results. Inductive coupling units are used as couplers for coupling the signal to the power line to avoid physical connections to the distribution line. The inductance of the ferrite core, which depends on the frequency, determines the cut-off frequency of the inductive coupler. Coupling loss can be minimized by increasing the number of windings around the coupler. Coupling efficiency was improved by more than 6 dB with three windings compared to the results obtained with one winding.

Frequency Spectra of AC Signal Generated from the Operation of Cast-Resin Power Transformer (운전중인 몰드형 전력변압기의 음향방출신호에 대한 주파수 스펙트럼 특성)

  • 구경철;이상우;이동인;이광식;김인식;김이국;신용철
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.246-250
    • /
    • 2000
  • In this paper, Frequency spectra of AE(acoustic emission) signals generated from the magnetizing and the load currents in the actual operating cast-resin power transformer of 500[kVA] under distribution system of22.9[kV] were also analysed to distinguish the AE signals due to void discharges from the magnetic circuit noises in the core of cast-resin power transformer. As the experimental results, we could distinguish the AE signals whether those signals were caused due to the void discharges or due to the magnetic circuit noises by analyzing the frequency spectrum of AE signals. Frequency spectra of AE signals generated from the cast-resin power transformer in operation due to both the magnetizing and the load currents appeared in the range of 40-120[khz].

  • PDF