• Title/Summary/Keyword: core particle

Search Result 393, Processing Time 0.023 seconds

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

The Effects of Particle Size Distribution on Electromagnetic Properties of Mn-Zn Ferrites (입자분포가 Mn-Zn Ferrite의 전자기적 물성에 미치는 경향)

  • 강남규;서정주;신명승;한명호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1055-1060
    • /
    • 1998
  • The effects of particle size distribution have been investigated on the high frequency low loss Mn-Zn fer-rites. The particle size distribution was controlled by milling time. Zirconia ball and engineering plastic jar were employed to avoid iron contamination from the milling media. As increasing the milling time BET value was increased from 0.55 to 3.21m2/g and mean particle size was decreased from 2.1 $\mu\textrm{m}$ to 1.0$\mu\textrm{m}$ The large specific surface area of initial powder resulted in the high density of sintered core. However starting powders with high BET lead to inhomogeneous grain growth as well as poor electromagnetic pro-perties at sintering temperature above 1300$^{\circ}C$.

  • PDF

Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics (동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구)

  • Hansung Lee;Minsu Kim;Byungmin Ahn
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.332-338
    • /
    • 2023
  • Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

Vibration control performance of particle tuned mass inerter system

  • Zheng Lu;Deyu Yan;Chaojie Zhou;Ruifu Zhang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.383-397
    • /
    • 2024
  • To improve the vibration control performance and applicability of traditional particle tuned mass damper (PTMD) and realize the significant characteristic of lightweight design, this study proposes a novel particle tuned mass inerter system (PTMIS) by introducing inerter system (IS) to the PTMD. In the study, the motion equation of single degree of freedom (SDOF) structure attached with PTMIS is established first, then the variation law of the system's vibration reduction performance (VRP) is discussed through parameter analysis, and it is compared with the PTMD to analyze its VRP advantages. Finally, its vibration reduction (VR) mechanism from the perspective of core control force and energy analysis is explored, and its cavity relative displacement from the application perspective is analyzed. The results show that the PTMIS can remarkably improve the vibration control effectiveness of the PTMD. The reason is that the inerter can store energy and transfer the energy to the cavity and particles, which further stimulates the interaction between the two parts, thereby improving the nonlinear energy consumption effectiveness. Also, the IS can amplify the damping element's energy dissipation efficiency. In addition, the PTMIS can effectively reduce the working stroke of the PTMD, and through the analysis of the lightweight characteristics of the PTMIS, it is found that its lightweight advantage can reach nearly 100%.

Flame Synthesis of Silica-Coated Iron Oxide Nanoparticles and Their Characterization

  • Jun, Kimin;Yang, Sangsun;Lee, Jeonghoon;Pikhitsa, Peter V.;Choi, Mansoo
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.209-219
    • /
    • 2013
  • We have used the modified diffusion flame burner to synthesize silica coated iron oxide nanoparticles having enhanced superparamagnetic property. Silica-encapsulated iron oxide particles were directly observed using a high resolution transmission electron microscope. From the energy dispersive X-ray spectroscopy (EDS) and zeta potential measurements, the iron oxide particles were found to be completely covered by a silica coating layer. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements revealed that the iron oxide core consists of ${\gamma}-Fe_2O_3$ rather than ${\alpha}-Fe_2O_3$. Our magnetization measurements support this conclusion. Biocompatibility test of the silica-coated iron oxide nanoparticles is also conducted using the protein adsorption onto the coated particle.

Occlusion-Robust Marker-Based Augmented Reality Using Particle Swarm Optimization (파티클 집단 최적화를 이용한 가려짐에 강인한 마커 기반 증강현실)

  • Park, Hanhoon;Choi, Junyeong;Moon, Kwang-Seok
    • Journal of the HCI Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • Effective and efficient estimation of camera poses is a core method in implementing augmented reality systems or applications. The most common one is using markers, e.g., ARToolkit. However, use of markers suffers from a notorious problem that is vulnerable to occlusion. To overcome this, this paper proposes a top-down method that iteratively estimates the current camera pose by using particle swarm optimization. Through experiments, it was confirmed that the proposed method enables to implement augmented reality on severely-occluded markers.

Fluid-Structure Interaction Modeling and Simulation of CMP Process for Semiconductor Manufacturing

  • Sung, In-Ha;Yang, Woo-Yul;Kwark, Ha-Slomi;Yeo, Chang-Dong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • Chemical mechanical planarization is one of the core processes in fabrication of semiconductors, which are increasingly used for information storage devices like solid state drives. For higher data capacity in storage devices, CMP process is required to show ultimate precision and accuracy. In this work, 2-dimensional finite element models were developed to investigate the effects of the slurry particle impact on microscratch generation and the phenomena generated at pad-particle-wafer contact interface. The results revealed that no plastic deformation and corresponding material removal could be generated by simple impact of slurry particles under real CMP conditions. From the results of finite element simulations, it could be concluded that the pad-particle mixture formed in CMP process would be one of major factors leading to microscratch generation.

Hierarchical sampling optimization of particle filter for global robot localization in pervasive network environment

  • Lee, Yu-Cheol;Myung, Hyun
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.782-796
    • /
    • 2019
  • This paper presents a hierarchical framework for managing the sampling distribution of a particle filter (PF) that estimates the global positions of mobile robots in a large-scale area. The key concept is to gradually improve the accuracy of the global localization by fusing sensor information with different characteristics. The sensor observations are the received signal strength indications (RSSIs) of Wi-Fi devices as network facilities and the range of a laser scanner. First, the RSSI data used for determining certain global areas within which the robot is located are represented as RSSI bins. In addition, the results of the RSSI bins contain the uncertainty of localization, which is utilized for calculating the optimal sampling size of the PF to cover the regions of the RSSI bins. The range data are then used to estimate the precise position of the robot in the regions of the RSSI bins using the core process of the PF. The experimental results demonstrate superior performance compared with other approaches in terms of the success rate of the global localization and the amount of computation for managing the optimal sampling size.

Preparation of composite particles by Rapid Expansion of Supercritical fluid Solutions and Release behavior

  • Ryu, Han-Won;Kim, Jung-Hwan;Kim, Young-Do;Shin, Kun-Chul
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.117-121
    • /
    • 1998
  • The Rapid Expansion of supercritical fluid Solutions (RESS) process was applied to particles coating. Experiments were conducted in a fluidized bed with an internal nozzle in the center of the reaction tube. Microcapsules (mean particle size : 49$\mu\textrm{m}$) prepared by spray drying method were used as the core particles. Supercritical CO2 solutions of paraffin were expanded through the nozzle in to the bed that was fluidized by air. Surface morphology prepared particles was observed by SEM. For the inspection of particle size change, particle size distributions were measured before and after coating. The releasing behavior of Mg2+ ions inspected by AA.

  • PDF

Fluorescence and Laser Light Scattering Studies of Modified Poly(ethylene-co-methylacrylate0 Ionomers on the Formation of Stable Colloidal Nanoparticles in Aqueous Solution

  • 여상인;우규환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1054-1059
    • /
    • 1998
  • Fluorescence and dynamic light scattering measurements were applied to the study of formation and structure of aggregated colloidal particles in modified poly(ethylene-co-methylacrylate) ionomers in aqueous solution. Both 8-anillino-l-naphthalene-sulfonic acid (ANS) and pyrene were used as fluorescence probe to obtain the information on the structure of particle surface and inside, respectively. Three different ionomers used in this study started to aggregate at very dilute concentration, 3-8 x 10-6 g/mL. In this study, we demonstrate that the polyethylene ionomers can form stable nanoparticles. The hydrophobic core made of the polyethylene backbone chains is stabilized by the ionic groups on the particle surface. Such a formed stable nanoparticles have a relatively narrow size distribution with an average radius in the range of 27-48 nm, depending on the kind of ionic groups. Once the stable particles are formed, the particle size distributions were nearly constant. This study shows another way to prepare surfactant-free polyethylene nanoparticles.