• Title/Summary/Keyword: core formula

Search Result 137, Processing Time 0.023 seconds

Movement Characteristics Analysis of Single Phase Transformer Winding Using Finite Element Method (유한요소법을 이용한 단상변압기권선의 운동특성해석)

  • Choi, Myoung-Jun;Kim, Hyung-Seok;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.104-106
    • /
    • 1996
  • In this paper, the dynamic motion driven by electromagnetic force of transformer windings is modeled and its characteristics are numerically analyzed. The electromagnetic field is obtained using the 2D finite element method taking account of anisotropic property of iron core, and the electromagnetic force on the transformer winding is calculated from Lorenz's force formula using the field distribution result. The system motion equation driven by electromagnetic force and gravitational force is numerically analyzed using the 4-order Runge-Kutta algorithm. Above analyses procedure is applied to a single-phase core-type transformer to validate its algorithm.

  • PDF

Composite action of notched circular CFT stub columns under axial compression

  • Ding, Fa-xing;Wen, Bing;Liu, Xue-mei;Wang, Hai-bo
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • This paper conducted both numerical and theoretical studies to investigate the composite action of notched circular concrete-filled steel tubular (CFT) stub columns under axial compression and established a theoretical method to predict their ultimate bearing capacity. 3D finite element (FE) analysis was conducted to simulate the composite action and the results were in good agreement with experimental results on circular CFT stub columns with differently oriented notches in steel tubes. Parametric study was conducted to understand the effects of different parameters on the mechanical behavior of circular CFT stub columns and also the composite action between the steel tube and the core concrete. Based on the results, a theoretical formula was proposed to calculate the ultimate bearing capacity of notched CFT stub columns under compression with consideration of the composite action between the steel tube and the core concrete.

Effect of open-core screw dislocation on axial conductivity in semiconductor crystals

  • Taira, Hisao;Sato, Motohiro
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.171-182
    • /
    • 2013
  • The alternating current (AC) conductivity in semiconductor crystals with an open-core screw dislocation is studied in the current work. The screw dislocation in crystalline media results in an effective potential field which affects the electronic transport properties of the system. Therefore, from a technological view point, it is interesting to investigate properties of AC conductivity at frequencies of a few terahertz. To quantify the screw-induced potential effect, we calculated the AC conductivity of dislocated crystals using the Kubo formula. The conductivity showed peaks within the terahertz frequency region, where the amplitude of the AC conductivity was large enough to be measured in experiments. The measurable conductivity peaks did not arise in dislocation-free crystals threaded by a magnetic flux tube. These results imply different conductivity mechanisms in crystals with a screw dislocation than those threaded by a magnetic flux tube, despite the apparent similarity in their electronic eigenstates.

Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat SourcesZ

  • Lee, Heedo;Park, Goon-cherl
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.496-506
    • /
    • 1998
  • This paper deals with the computational modeling of buoyancy-driven turbulent heat transfer involving spatially uniform volumetric heat sources in semicircular geometry. The Launder & Sharma low-Reynolds number k-$\varepsilon$ turbulence model without any modifications and the SIMPLER computational algorithm were used for the numerical modeling, which was incorporated into the new computer code CORE-TNC. This computer code was subsequently benchmarked with the Mini-ACOPO experimental data in the modified Rayleigh number range of 2$\times$10$^{13}$ $\times$10$^{14}$ . The general trends of the velocity and temperature fields were well predicted by the model used, and the calculated isotherm patterns were found to be very similiar to those observed in previous experimental investigations. The deviation between the Mini-ACOPO experimental data and the corresponding numerical results obtained with CORE-TNC for the average Nusselt number was less than 30% using fine grid in the near-wall region and the three-point difference formula for the wall temperature gradient. With isothermal pool boundaries, heat was convected predominantly to the upper and adjacent lateral surfaces, and the bottom surface received smaller heat fluxes.

  • PDF

Analysis on Torque of Solid Iron Rotor Induction Motor (In Rotor without Slot) (강괴철심회전자를 가진 유도전도기의 토오크 해석)

  • Yun Jong Lee
    • 전기의세계
    • /
    • v.21 no.2
    • /
    • pp.5-8
    • /
    • 1972
  • The purpose of this paper is, as a preliminary step to study on the method of analysing the torque of toothed solid iron rotor, to make an inquiry into the torque calculation formula of homogenious solid iron rotor without slot. The starting point for its theoretical analysis on torque generated by eddy current in solid iron rotor is based on the maximum air gap flux density. In solid rotor induction motor, torque generated by rotor core is considerably large in the range of large slip. The calculated value and observed value on the test machine are also examined in this paper.

  • PDF

A Novel Integrated Generator Converter System for HVDC and Eddy Current of it's Solid Rotor Core (HVDC 송전을 위한 새로운 집적변환 발전기 계통과 그 회전자 중심의 와전류)

  • 이은웅;김일중;이민명
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.434-441
    • /
    • 1988
  • This paper proposes a new invention of the integrated generator converter system for the HVDC transmission. And it analyses the general formula for eddy currents in the rotor iron using the double Fourier series in order to trace the smallest eddy current losses of the system which connects a new designed synchronous generator windings or conventional synchronous generator windings with the v Graetz bridges.

  • PDF

Characteristics of Smart Skin for Wireless LAN system under Buckling Load (무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.42-45
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by only face material. In the experiment, if load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

Plasma Generation Method using PWM Control for Ash Process (반도체 Ash 공정용 PWM 제어 Plasma 발생방법)

  • Lee Joung-Ho;Choi Dae-Kyu;Choi Sang-Don;Lee Byoung-Kuk;Won Chung-Yuen;Kim Soo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.470-474
    • /
    • 2006
  • This dissertation discuses about a ferrite core plasma source using low operating frequency without sputtering problem by the stored electric field. Compared with the conventional RF power system with 13.56MHz switching frequency, the proposed plasma power system is only separated at 400kHz, so that it makes possible to use of low cost switching elements, PWM control and soft switching. Moreover, it could improve the coupling efficiency for plasma and antenna by using the ferrite core in order to transfer the energy of the load This dissertation tried to analyze new plasma generation method for the plasma generation system by modeling the plasma load and grafting the concept of impedance matching in order to interpret it with the formula This dissertation verified the ferrite core inductive coupling plasma source authorized for 400kHz of low frequency power by applying to the semi-conductor ash process thru the measurement of ash capacity and uniformed plasma distribution on the actual wafer.

  • PDF

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.

A Study on the High-Order Spectral Model Capability to Simulate a Fully Developed Nonlinear Sea States

  • Young Jun Kim;Hyung Min Baek;Young Jun Yang;Eun Soo Kim;Young-Myung Choi
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • Modeling a nonlinear ocean wave is one of the primary concerns in ocean engineering and naval architecture to perform an accurate numerical study of wave-structure interactions. The high-order spectral (HOS) method, which can simulate nonlinear waves accurately and efficiently, was investigated to see its capability for nonlinear wave generation. An open-source (distributed under the terms of GPLv3) project named "HOS-ocean" was used in the present study. A parametric study on the "HOS-ocean" was performed with three-hour simulations of long-crested ocean waves. The considered sea conditions ranged from sea state 3 to sea state 7. One hundred simulations with fixed computational parameters but different random seeds were conducted to obtain representative results. The influences of HOS computational parameters were investigated using spectral analysis and the distribution of wave crests. The probability distributions of the wave crest were compared with the Rayleigh (first-order), Forristall (second-order), and Huang (empirical formula) distributions. The results verified that the HOS method could simulate the nonlinearity of ocean waves. A set of HOS computational parameters was suggested for the long-crested irregular wave simulation in sea states 3 to 7.