• 제목/요약/키워드: copper resistance

검색결과 500건 처리시간 0.023초

스프링클러 동배관의 공식부식 발생원인 (Investigation on Causes of Pitting Corrosion in Sprinkler Copper Tubes)

  • 이재봉;정호석
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.6-14
    • /
    • 2014
  • Copper metal is widely used in tubes installed in sprinkler water services because of its excellent corrosion resistance. Copper corrosion is considered to be insignificant in water system and the incident of copper pipeline failure is relatively low. However, pitting corrosion is a major problem with all copper tubes. In this study, leaked sprinkler copper tubes were collected from three different locations and examined on the causes of pitting corrosion of copper tubes in sprinkler water plumbing systems. Electrochemical tests such as potentiodynamic polarization, as well as surface and chemical analyses were performed. Results show that pitting corrosion of copper tubes were found as Type I pitting that the carbon film formed on the copper tubes have a harmful effects, causing the pinhole failure in the pipe and resulting in leakage of water. The contermeasures on Type I pitting corrosion of copper tubes were proposed.

실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성 (Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode)

  • 김경민;조영준;장효식
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.228-232
    • /
    • 2019
  • Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.

Effect of Copper Retention on Copper Leaching in Wood Treated with Copper-based Preservatives

  • Ra, Jong-Bum;Kang, Sung-Mo;Kang, Shin-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권5호
    • /
    • pp.421-425
    • /
    • 2009
  • This research investigates the effect of copper retention on copper leaching in wood treated with copper-based preservatives. Radiata pine (Pinus radiata D. Don) sapwood samples were ground in a Wiley mill equipped with a 20-mesh screen. The ground wood was vacuum-treated with various concentrations of alkaline copper quat (ACQ), bis-(N-cyclohexyl-diazeniumdioxy)-copper (CB-HDO), and copper azole (CUAZ). The treated samples were conditioned at $70^{\circ}C$ and 100% RH for 72 hours. The samples were leached by using the distilled water for four weeks, and the copper contents in each sample were measured by X-ray spectroscopy. As expected, the copper leaching was increased with increasing of copper retention. The copper leaching from the ACQ and CB-HDO treated samples were gradually decreased with increasing copper retention: however, the copper losses from the CUAZ treated samples appeared to be proportionally increased with the increase in copper retention in all retention levels tested. The results indicate that at the conditions of the same copper retention ACQ and CB-HDO treated wood have a better leaching resistance compared to CUAZ treated wood.

구리 스퍼터링 의류소재의 전기전도성과 스텔스 특성 - 의류소재 기공 크기 변화를 중심으로 - (Electrical conductivity and stealth characteristics of copper-sputtered clothing materials - Focusing on changes in the pore size of clothing materials - )

  • 한혜리
    • 복식문화연구
    • /
    • 제31권1호
    • /
    • pp.107-123
    • /
    • 2023
  • This research studied the electrical characteristics, IR transmission characteristics, stealth functions, and thermal characteristics of infrared thermal-imaging cameras of copper-sputtered samples. Nylon samples were prepared for each density as a base material for copper-sputtering treatment. Copper-sputtered NFi, NM1, NM2, NM3, NM4, and NM5, showed electrical resistance of 0.8, 445.7, 80.7, 29.7, 0.3, and 2.2 Ω, respectively, all of which are very low values; for the mesh sample, the lower the density, the lower the electrical resistance. Measuring the IR transmittance showed that the infrared transmittance of the copper-sputtered samples was significantly reduced compared to the untreated sample. Compared to the untreated samples, the transmittance went from 92.0-64.1%. When copper sputtered surface was directed to the IR irradiator, the IR transmittance went from 73.5 to 43.8%. As the density of the sample increased, the transmittance tended to decreased. After the infrared thermal imaging, the absolute values of △R, △G, and △B of the copper phase increased from 2 to 167, 98 to 192, and 7 to 118, respectively, and the closer the density of the sample (NM5→NFi), the larger the absolute value. This proves that the dense copper phase-up sample has a stealth effect on the infrared thermal imaging camera. It is believed that the copper-sputtered nylon samples produced in this study have applications in multifunctional uniforms, bio-signal detection sensors, stage costumes, etc.

상온 ECR-MOCVD에 의해 제조되는 Cu/C박막특성 (Characteristics of copper/C films on PET substrate prepared by ECR-MOCVD at room temperature)

  • 이중기;전법주;현진;변동진
    • 한국군사과학기술학회지
    • /
    • 제6권3호
    • /
    • pp.44-53
    • /
    • 2003
  • Cu/C films were prepared at room temperature under $Cu(hfac)_2-Ar-H_2$ atmosphere in order to obtain metallized polymer by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The room temperature MOCVD on polymer substrate could be possible by collaboration of ECR and a DC bias. Structural analysis of the films by ECR was found that fine copper grains embedded in an amorphous polymer matrix with indistinctive interfacial layer. The increase in $H_2$ contents brought on copper-rich film formation with low electric resistance. On the other hand carbon-rich films with low sheet electric resistance were prepared in argon atmosphere. The electric sheet resistance of Cu/C films with good interfacial property were controlled at $10^8$~$10^0$ Ohm/sq. ranges by the $H_2$/Ar mole ratio and the shielding effectiveness of the film showed maximum up to 45dB in the our experimental range.

치과용 아말감의 부식(腐蝕)에 관한 전기화학적 연구 (AN ELECTROCHEMICAL STUDY ON THE CORROSION OF DENTAL AMALGAM)

  • 장계봉
    • Restorative Dentistry and Endodontics
    • /
    • 제6권1호
    • /
    • pp.115-122
    • /
    • 1980
  • The corrosion of silver amalgam is regarded as one of major causes in the failures of dental amalgam restorations. To evaluate the corrosion resistance of dental amalgam alloys, electrochemical tests such as potential and polarization measurement were used widely. But these commonly used methods have not provided the sufficient informations on relative resistance of amalgam to corrosion. In this experiment, the corrosion currents were measured using electronic potentiostat to compare some commercial dental amalgam alloys. All alloys were triturated in a amalgamator and condensed into a mold described in A.D.A. Specification No. 1 to produce cylinder form specimens of 4mm diameter by 5mm long. After specimen kept for 1 week at $37^{\circ}C$, each specimen was embedded in epoxy resin. The surfaces of specimens were then polished with a emery paper, diamond dust, and $Al_2O_3$. These specimens were immersed in artifical saliva kept at $37^{\circ}C$, and currents of each specimen were measured for 24 hours at 0.0volt (SCE). The author obtained conclusions as follows: 1. High copper amalgam showed superior resistance against corrosion to conventional amalgam, but a pellet form of high copper amalgam seemed to be susceptible to corrosion. 2. In lathe-cut alloys, fine-cut had superior resistance against corrosion to regular-cut. 3. Non-zinc conventional amalgam alloys were more resistant to corrosion than that of zinc containing conventional amalgam alloys. 4. In both of high copper and conventional amalgams, predispensed forms tended to have better resisitance to corrosion than that of pellet forms.

  • PDF

전기접점 재료상에 입힌 경질금고금층의 특성연구 Properties of a Hard Gold plating Layer on Electrical Contace Materials

  • 최송천;장현구
    • 한국표면공학회지
    • /
    • 제23권3호
    • /
    • pp.173-182
    • /
    • 1990
  • In order to prevent the thermal and enviromenatal degradation of contact materials a nickel layer was plated as an undercoat of gold plating on the surface phosphorous bronze. The thickness of nikel and gold coating and chemical resistance of the coatings were measured at various conditions. Variation of morphology and chemical composition was studied by SEM, EDS and ESCA, respectively. Nickel layer was found to act as a thermal diffusion barrier and to retard the diffusion of copper from substrate to gold coating in the temperature $200^{\circ}C$~$400^{\circ}C$. below $200^{\circ}C$gold coated contacts showed a stable and low contanct resistance, while above $200^{\circ}C$ rapid diffusion of copper formed copper oxide on the surface layer and raised the contact resistance. With the nickel thinkness of abount 5$\mu$m as an undercoat the gold thinkness of $0.5\mu$m, showed satistactory (less than 1 m$\Omega$) contact resistance below 20$0^{\circ}C$ and corresponding gold thinkness increased to 1.0 m at $300^{\circ}C$~$400^{\circ}C$.

  • PDF

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

결정립 제어 기술을 이용한 클락스프링 케이블용 고내구 동박 소재 개발 (A Development of High-Durability Copper Foil Materials for Clock Spring Cable Using Grain Size Control Techniques)

  • 채을용;이호승
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.20-25
    • /
    • 2021
  • Flexural resistance evaluation of FFC (Flexible Flat Cable) was performed according to the grain size of rolled copper foil by adding 0.1wt% silver (Ag) and electrodeposited copper foil by slitting method after heat-treatment. These methods are aimed at enhancing the flexural durability of the FFC by growing the grain size of copper foil. By increasing the grain size of the copper foil and minimizing the miss-orientation at grain boundaries, the residual stress at the grain boundaries of the copper foil is reduced and the durability of the FFC is improved. Maximizing an average grain size of copper foil can be got a good solution in order to enhance the durability of the FFC or FPCB (Flexible Printed Circuit Board).

수계소화설비용 경량벽 스테인리스 강관의 사용가능성 평가에 관한 연구 (A Study on the Possibility of using Light-Wall Stainless Steel Pipe for Water-Based Fire Protection System)

  • 남준석;원성연;김영호;민경탁;박승민
    • 한국화재소방학회논문지
    • /
    • 제24권5호
    • /
    • pp.94-101
    • /
    • 2010
  • 수계소화설비에 사용되고 있는 관으로는 배관용 탄소강관, 압력배관용 탄소강관, 동관 등이 사용되고 있다. 최근 건축물의 고층화, 복합화로 소화설비에는 내식성이 우수하고, 시공성이 간편하며, 가볍고 경제적인 관의 사용이 고려되고 있다. 이러한 특징을 가진 스테인리스 강관과 기존에 사용되고 있는 동관의 물성, 강도, 내식성, 내열성 등의 비교를 통해 스테인리스 강관의 소화설비로의 사용 가능성을 평가하고자 하였다. 그 평가결과로 경량벽 스테인리스 강관인 일반배관용 스테인리스 강관(KS D 3595)은 1.2MPa미만의 압력에서 수계소화설비에 사용될 수 있는 충분한 물성, 강도, 내식성, 내열성 등을 가지고 있음을 확인할 수 있었다.