• Title/Summary/Keyword: copper nitrate

Search Result 77, Processing Time 0.028 seconds

A Study on N-Arylation of Indole Using Copper Nitrate or Copper Carbonate as a Catalyst (Copper Nitrate와 Copper Carbonate를 촉매로 이용한 Indole의 N-Arylation 연구)

  • Lee, Jun Young;Yang, Min Ho;Paik, Seung Uk
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.629-632
    • /
    • 2008
  • N-Arylation of indole with aryl iodides has been achieved by employing copper nitrate or copper cabonate as a catalyst, which might be more practical and economical over any other copper- or palladium-based catalysts for industrial applications. N,N'-dimethylethylenediamine was found to be the most effective with copper nitrate catalyst systems, while ethylenediamine was the most active with copper carbonate.

Synthesis of CuO nanoparticles by liquid phase precursor process (액상프리커서법에 의한 산화구리(CuO) 나노 입자의 합성)

  • Seong-Whan Shinn
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.855-859
    • /
    • 2023
  • Copper oxide (CuO) nanoparticles were successfully synthesized using a precursor in which industrial starch was impregnated with an aqueous solution of copper (II) nitrate trihydrate. The microstructure of the precursor impregnated with an aqueous solution of copper nitrate trihydrate was confirmed with a scanning electron microscope (SEM), and the particle size and the crystal structure of the copper oxide particles produced as the temperature of the heat treatment of the precursor increased was analyzed by X-ray diffraction (XRD) and the scanning electron microscope (SEM). As a result of the analysis, it was confirmed that the temperature at which the organic matter of the precursor is completely thermally decomposed is 450-490℃, and that the size and crystallinity of the copper oxide particles increased as the heat treatment temperature increased. The size of the copper oxide particles obtained through heat treatment at 500-800℃ during 1 hour was 100nm~2㎛. It was confirmed that the copper oxide crystalline phase is formed at a heat treatment temperature of 400℃, and only the copper oxide single phase existed up to 800℃. And it was also confirmed that the size of particles produced increased as the calcination temperature increased.

Study on Characteristics of Electrodeposited Thin Copper Film by Inorganic Additives in Pyrophosphate Copper Plating Bath (피로인산동욕의 무기첨가제에 의한 전해동박의 특성에 관한 연구)

  • Koo, Seokbon;Hur, Jinyoung;Lee, Hongkee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The copper deposit on steel plate was prepared by pyrophosphate copper plating solution made with variation of inorganic additive. $NH_4OH$ and $NH_4NO_3$ were used as inorganic additives. The copper layer characteristics - tensile strength, crystallite size and crystal orientation - were evaluated by X-ray diffraction and Universal Test Machine. The presence of ammonium nitrate results in reduction of average roughness value from $0.08{\mu}m$ to $0.03{\mu}m$. In pyrophosphate copper plating solution without Inorganic additive, tensile strength of electrodeposit copper foil was reduced from 600 MPa to 180 MPa after 7 days aging. However, when adding ammonium nitrate, there was almost no change of tensile strength, intensity of crystal orientation - (111), (200) and (220) - and crystallite size (2~30 nm).

Growth Rate and Yield of a Methanotrophic Bacterium Methylosinus Trichosporium OB3b : I. Experimental Measurements (메탄자화균 Methylosinus trichosporium OB3b의 성장 속도와 수율 : I. 실험적 고찰)

  • 황재웅;송효학;박성훈
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.391-398
    • /
    • 1998
  • The effect of culture medium copper availability on the specific growth rate(${\mu}$) and carbon conversion efficiency (CCE) was sutided for an obligatory methanotroph Methylosinus trichosporium OB3b under various combinations of carbon and nitrogen sources. Methane or methanol was used as a carbon source, and nitrate or ammonium was used as a nitrogen source. Medium copper availability determined the intracellular location or kind of methane monooxygenase (MMO), cell-membrane (particulate or pMMO) when copper was present and cytoplasm (soluble or sMMO) when copper was deficient. When methane was used as a carbon source, copper-containing medium exhibited higher ${\mu}$ and CCE than copper-free medium regardless of the kind of nitrogen source. When methanol was used as a carbon source, however, the effect of copper disappeared. Ammonium gave the higher ${\mu}$ and CCE than nitrate for both methane and methanol. Those observation suggest that there exist an important difference in energy utilization efficiency for methane assimilation between sMMO and pMMO.

  • PDF

Continuous-Flow Analysis for Determination of Nitrate Using Hydrazine-Copper Method in Plan (Hydrazine-Copper 방법을 이용한 연속흐름제어장치를 통한 식물체의 nitrate 분석)

  • Park, Yang-Ho;Park, So-Hyeon;Lee, Ju-Young;Jang, Byoung-Choon;Lee, Ki-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.204-208
    • /
    • 2006
  • This study is to describe continuous-flow analysis (CFA) for the determination of nitrate using hydrazine-copper in plant material and to test precision of this method compared with that of methods, which are RQflex method and salicylic acid method. Samples were leaves of watermelon, cucumber, melon and tomato. Nitrate values measured by the RQflex method were greater than those measured by CFA or salicylic acid method. The correlation of nitrate values between those measured by CFA and salicylic acid method was $R^2=0.9671$, and those measured by CFA between those measured by RQflex method was $R^2=0.9739$. Recovery rate of nitrate added to tissue extract by CFA method was $99.7{\pm}0.25%$.

Hydrothermal Synthesis of Rod-like Copper Oxide Crystals

  • Pee, Jae-Hwan;Lee, Dong-Wook;Kim, Ung-Soo;Choi, Eui-Seok
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.167-168
    • /
    • 2006
  • A hyrdrothermal synthesis has been developd to prepare rod-like crystals of copper oxide using copper nitrate trihydrate as a function of synthesis temperature, stirring speed and solution pH value. The properties of the fabricated crystals were studied using scanning electron microscopy, X-ray diffraction and particle size analysis. The morphology of the synthesized CuO was dependent on both the pH value of the solution and the morphology of the seed materials. Synthesized particles have regular morphologies and a uniform size distribution.

  • PDF

Leaching of Copper and Other Metal Impurities from a Si-Sludge Using Waste Copper Nitrate Solution (실리콘 슬러지로부터 폐질산구리용액을 이용한 구리 및 금속불순물의 침출)

  • Jun, Minji;Srivastava, Rajiv Ranjan;Lee, Jae-chun;Jeong, Jinki
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.11-19
    • /
    • 2016
  • A fundamental study to recycle a Si-Sludge and waste copper nitrate solution acid solution generated by domestic electronic industries was carried out. The waste copper nitrate solution was used as the lixiviant to leach the metals like Cu, Ca, Fe, etc. from the sludge leaving Si in the residues. The effect of reaction temperature, time and pup density on the metals leaching from the sludge was investigated. To enhance the extractability of Fe, the effect of HCl, $HNO_3$ and $H_2O_2$ introduced additionally during the leaching was also examined. Considering the leaching efficiency of Fe along with Cu, the leaching conditions comprising of 200 ~ 225 g/L pulp density and $90^{\circ}C$ temperature for 30 min were optimized. Under this condition, 98.27 ~ 99.17% Cu could be dissolved in the leach liquor with the obtained purity of Si in the residues as 98.69 ~ 98.86 %. The study revealed that the leaching of Cu contained in the Si-Sludge with the waste copper nitrate solution is a plausible approach by which the obtained leach liquor can further be treated suitably to recover Cu as the high pure value-added products.

A STUDY ON THE REDUCTION OF GALVANIC CURRENT BETWEEN AMALGAM AND GOLD ALLOY WITH VARIOUS CHEMICAL AGENTS (수종 아말감과 금합금의 갈바닉 전류 측정에 관한 연구)

  • Kim, Seung-Soo;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.469-481
    • /
    • 1993
  • The purpose of this study was to achieve the reduction of the galvanic current between the dental amalgam alloy and gold alloy. In order to measure the galvanic current between these two metals a prep in the size of $4{\times}13mm$ which was filled with amalgam and another prep of $4{\times}2mm$ was filled with gold alloy was made in the acrylic resin. These two preps were then connected to a 2mm diameter copper wire. Using an ammeter to measure the galvanic current, six different kinds of amalgam and gold alloy were immersed in saline solution with approximately 10mm distance between the two alloys. Chemical agents that are thought to reduce the galvanic current such as hydrazine. silver nitrate, potassium chromate, and bonding agents such as Scotch bond 2(3M) and All bond 2(Bisco) were applied to the alloy surface. Cathodic inhibitor such as hydrazine was applied to gold alloy where as anodic inhibitor such as silver nitrate and potassium chromate were applied to amalgam. Both bonding agents, Scotch bond 2(3M) and All bond 2 (Bisco), were applied to amalgam. The following results were obtained when the currency on the coated alloy surface was compared to the uncoated surface. 1. The galvanic currency went down as the time elapsed and after 30 minutes no change was detected. 2. Initial currency was higher in low copper amalgam compared to high copper amalgam. Intitial currency was the highest in low copper lathe-cut amalgam. 3. Group of gold coated with hydrazine had the most reduction in galvanic currency. 4. Group of amalgam coated with silver nitrate or potassium chromate also showed significant reduction in galvanic currency. 5. The bonding agents also helped reduce galvanic currency. 6. Of all the agents used to reduce galvanic currency, silver nitrate showed the best result.

  • PDF

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

Synthesis, Characterization and Magnetic Properties of a Novel Disulfonate-pillared Copper Hydroxide Cu2(OH)3(DS4)1/2, DS4 = 1,4-Butanedisulfonate

  • Park, Seong-Hun;Lee, Cheol-Eui
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1587-1592
    • /
    • 2006
  • We report the preparation, structure and magnetic properties of a new pillared complex, copper(II) hydroxy-1,4-butanedisulfonate, $Cu_2(OH)_3(O_3SC_4H_8SO_3)_{1/2}$. The titled compound was obtained by anion exchange, using copper hydroxyl nitrate $(Cu_2(OH)_3NO_3)$ as the starting material. According to the XRD data, this compound exhibits a pillared layered structure with organic layers tilted between the copper hydroxide layers with a tilt angle of $21.8^{\circ}$. FTIR spectroscopy confirms total exchange of nitrate by the sulfonate and indicates that the sulfonate functions are linked to the copper(II) ions with each aliphatic chain bridging the adjacent hydroxide layers. According to the dc and ac magnetic measurements, the title compound is a metamagnet consisting of spin-canted antiferromagnetic layers, with a Neel temperature of 11.8 K.