• Title/Summary/Keyword: copolymers

Search Result 866, Processing Time 0.026 seconds

Synthesis and Characteristics of Blue Light Emitting Soluble PPV Copolymer (청색 발광 가용성 PPV 공중합체의 합성 및 특성)

  • 이경민;최병수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.145-151
    • /
    • 2001
  • In this study, blue light emiting, soluble PPV copolymers were synthesized by Witting reaction and characterized. ITO/copolymer/Ca and ITO/copolymer/A1 structured light emitting diodes(LED) were fabricated and their I-V characteristics were examined. Copolymers showed $\pi$-$\pi$ transition in UV-Vis./NIR spectra. The PL and abosorption spectrum showed the symmetric vibration modes with mirror images which means that copolymers are highly aligned. By introducing aliphatic hydrocarbon group on polymer main chain, the solubility of copolymers was improved and no significant effects of substituent were observed. The band offset of copolymers are well suited as light emitting material for LED application than monomer or oligomer does. THe band offset of copolymers is ∼3eV in PL spectrum and the threshold voltages of ITO/copolymer/Ca and ITO/copolymer/Al structured LED 3V, 12V respectively. In the case of ITO/copolymer/Ca LED, it is believed that the amount of electrons and holes is well balanced and the recombination of opposite charges occurs easily because the work functions of Ca and Al electrodes are 2.9 and 4.3eV respectively and the difference in barrier height between polymer and electrode was small.

  • PDF

Properties of the Blends of Ethylene-Vinyl Acetate and Ethylene-$\alpha$-Olefins Copolymers

  • Park Soochul;Yim Chaiseok;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • The effect of the vinyl acetate (VA) content on the thermal, viscoelastic, rheological, morphological and mechanical behaviors in various blends of ethylene-vinyl acetate (EVA)/ethylene-$\alpha$-olefin copolymers was investigated using 28, 22 and $15 mol\%$ of VA in EVA. In the DSC melting and crystallization thermograms of all of the EVA systems blended with ethylene-$\alpha$-olefin copolymers, discrete peaks were observed which were related to the constituents. In the dynamic mechanical thermal analysis, the storage modulus increased with increasing content of ethylene-$\alpha$-olefin copolymers. In addition, the transition regions relating to the tan bpeaks varied with the VA content. The crossover point between G' and G" varied depending on the VA contents, and shear-thinning was more prominent in the EVA/EtBC system. In the SEM investigation, a discrete phase morphology was observed in both the EVA/EtBC and EVA/EtOC blends, but the contrast improved with decreasing VA content. However, the tensile strength and modulus improved, but the elongation at break reduced with decreasing VA content, implying that the ethylene-$\alpha$-olefin copolymers play the role of reinforcing materials. Thus, the EVA and ethylene-$\alpha$-olefin components in the copolymers are immiscible in the molten and solid states, but are nevertheless mechanically compatible.

Synthesis and Characterization of Sulfonated Poly(arylene ether) Polyimide Multiblock Copolymers for Proton Exchange Membranes

  • Lee, Hae-Seung;Roy Abhishek;Badami Anand S.;McGrath James E.
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.160-166
    • /
    • 2007
  • Novel multiblock copolymers, based on segmented sulfonated hydrophilic-hydrophobic blocks, were synthesized and investigated for their application as proton exchange membranes. A series of segmented sulfonated poly(arylene ether sulfone)-b-polyimide multiblock copolymers, with various block lengths, were synthesized via the coupling reaction between the terminal amine moieties on the hydrophilic blocks and naphthalene anhydride functionalized hydrophobic blocks. Successful imidization reactions required a mixed solvent system, comprised of NMP and m-cresol, in the presence of catalysts. Proton conductivity measurements revealed that the proton conductivity improved with increasing hydrophilic and hydrophobic block lengths. The morphological structure of the multiblock copolymers was investigated using tapping mode atomic force microscopy (TM-AFM). The AFM images of the copolymers demonstrated well-defined nanophase separated morphologies, with the changes in the block length having a pronounced effect on the phase separated morphologies of the system. The self diffusion coefficient of water, as measured by $^1H$ NMR, provided a better understanding of the transport process. Thus, the block copolymers showed higher values than Nafion, and comparable proton conductivities in liquid water, as well as under partially hydrated conditions at $80^{\circ}C$. The new materials are strong candidates for use in PEM systems.

Thermosensitive Block Copolymers Consisting of Poly(N-isopropylacrylamide) and Star Shape Oligo(ethylene oxide)

  • Lee, Seung-Cheol;Chang, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1521-1525
    • /
    • 2009
  • Thermosensitive block copolymers of ethylene oxide and N-isopropylacrylamide (NIPAM) were synthesized. A five armed star shape oligo(ethylene oxide) initiator with a cyclotriphosphazene core was prepared and used for the atom transfer radical polymerization (ATRP) of NIPAM. The lower critical solution temperatures (LCSTs) of the copolymers were 36 to 46 ${^{\circ}C}$, higher than that of PNIPAM (32 ${^{\circ}C}$), depending on their molecular weights. The copolymers were soluble in water below the LCSTs but formed micelles above the LCSTs. The thermosensitive micellization behaviors of the polymers were investigated by fluorescence spectroscopy. With increasing the temperature of an aqueous solution of P2 and pyrene above the LCST, the peak of 333 nm red-shifted to appear around 339 nm and its intensity increased significantly, indicating the micelle formation. The transfer of pyrene into the micelles was also confirmed by a confocal laser scanning microscope. The fluorescence image obtained from P2 in an aqueous pyrene solution exhibited a green emission resulting from the pyrene transferred into the micelles. Salt effects on the solubility of the copolymers in an aqueous solution were investigated. The LCST of P2 decreased sharply as the concentration of sodium chloride increased, while decreased slowly with potassium chloride.

Amphiphilic Norbornene-Based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared by Living Ring Opening Metathesis Polymerization

  • Park, Su-Dong;Xu, Wentao;Chung, Chan-Hong;Kwon, Young-Hwan
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • We report the successful synthesis of poly(NBECOOH-b-NBEPOSS) copolymers, taking advantage of the sequential, living ring opening metathesis polymerization of NBETMS and NBEPOSS using the $RuCl_2(=CHPh)(PCY_3)_2$/$CH_2Cl_2$/$20^{\circ}C$ system, followed by the hydrolysis of trimethylsilyl groups in poly(NBETMS-b-NBEPOSS) copolymers. The living behavior of ROMP of NBETMS was first investigated using two diagnostic plots, a first order kinetic plot and a $\bar{M}_n$ vs. conversion plot. The plots confirmed that no termination and chain transfer reaction had occurred during polymerization. Poly(NBECOOH-b-NBEPOSS) copolymers were prepared using the sequential monomer addition of NBEPOSS to living poly(NBETMS) chain ends, followed by the hydrolysis of trimethylsilyl groups in the poly(NBETMS-b-NBEPOSS) copolymers. The high structural integrity of poly(NBE-COOH-b-NBEPOSS) copolymers was confirmed by $^1H$-NMR, $^{13}C$-NMR spcctroscopy and GPC.

Chemoenzymatic Synthesis of H-shaped Amphiphilic Pentablock Copolymer and Its Self-assembly Behavior (H-형태 양친매성 펜타블록 공중합체의 화학효소적 합성과 자기회합거동 평가)

  • Chen, Peng;Li, Ya-Peng;Li, Cai-Jin;Meng, Xin-Lei;Zhang, Bao;Zhu, Ming;Liu, Yan-Jing;Wang, Jing-Yuan
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.332-341
    • /
    • 2013
  • H-shaped amphiphilic pentablock copolymers $(PSt)_2-b-PCL-b-PEO-b-PCL-b-(PSt)_2$ was synthesized via chemoenzymatic method by combining enzyme-catalyzed ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (${\varepsilon}$-CL) and atom transfer radical polymerization (ATRP) of styrene. By this process, we obtained copolymers with controlled molecular weight and low polydispersity. The structure and composition of the obtained copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and infrared spectroscopy analysis (IR). The crystallization behavior of the copolymers was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization behavior of the H-shaped block copolymers demonstrated a PCL dominate crystallization. The self-assembly behavior of the copolymers was investigated in aqueous media. The hydrodynamic diameters of the copolymer micelles in aqueous solution were measured by dynamic light scattering (DLS). The morphology of the copolymer micelles was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hydrodynamic diameters of spherical micelles declined gradually with the increase of the hydrophobic chain lengths of the copolymers. The critical micelle concentration (CMC) values were determined from fluorescence emission, and it was found that the CMCs decreased with an increase of PSt hydrophobic block lengths.

Formaldehyde Free Cross-linking Agents Based on Maleic Anhydride Copolymers

  • Yoon, Kee-Jong;Woo, Jong-Hyung;Seo, Young-Sam
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.182-187
    • /
    • 2003
  • Low molecular weight copolymers of maleic anhydride and vinyl acetate were prepared to develop formaldehyde free cross-linking agents. Since lower molecular weight is favorable for efficient penetration of the finishing agent into the cotton fibers in the padding process, the concentration of the initiator, chain transfer agent and the monomer ratios were varied to obtain copolymers of low molecular weights. The prepared polymers were characterized by GPC, $^1{H-NMR}$, FTIR, DSC and TGA. Copolymers of molecular weights of 2 000 to 10 000 were obtained and it was found that the most efficient method of controlling the molecular weight was by varying the monomer ratios. Poly(maleic anhydride-co-vinyl acetate) did not dissolve in water, but the maleic anhydride residue hydrolyzed within a few minutes to form poly(maleic acid-co-vinyl acetate) and dissolved in water. However, the maleic acid units undergo dehydration to form anhydride groups on heating above ${160}^{\circ}C$ to some extent even in the absence of catalysts. The possibility of using the copolymers as durable press finishing agent for cotton fabric was investigated. Lower molecular weight poly(maleic anhydride-co-vinyl acetate) copolymers were more efficient in introducing crease resistance, which appears to be due to the more efficient penetration of the cross-linking agent into cotton fabrics. The wrinkle recovery angles of cotton fabrics treated with poly(maleic anhydride-co-vinyl acetate) copolymers were slightly lower than those treated with DMDHEU and were higher when higher curing temperatures or higher concentrations of copolymer were used, and when catalyst, $NaH_2$$PO_2$, was added. The strength retention of the poly(maleic anhydride-co-vinyl acetate) treated cotton fabrics was excellent.

Rheological and Thermal Properties of Acrylonitrile-Acrylamide Copolymers: Influence of Polymerization Temperature

  • Wu Xueping;Lu Chunxiang;Wu Gangping;Zhang Rui;Ling Licheng
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.103-107
    • /
    • 2005
  • An attempt was made to correlate the polymerization temperature and rheological and thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers. The copolymers were synthesized at different polymerization temperature. The copolymer structure was characterized by gel permeation chromatography (GPC) and Infrared spectrum (IR). The rheological and thermal properties were investigated by a viscometer and differential scanning calorimeter-thermogrametric (DSC-TG) analysis, respectively. When the polymerization temperature increased from $41^{\circ}C\;to\;65^{\circ}C$, the molecular weight $(\bar{M}_w)$ of copolymers decreased from 1,090,000 to 250,000, while its conversion increased from $18\%\;to\;63\%$, and the polymer composition changed slightly. To meet the requirements of carbon fibers, the rheological and thermal properties of products were also investigated. It was found that the relationship between viscosity and $\bar{M}_w$ was nonlinear and the viscosity index (n) decreased from 3.13 to 2.69, when the solution temperature increased from $30^{\circ}C\;to\;65^{\circ}C$. This suggests the dependence of viscosity upon $\bar{M}_w$ is higher at lower solution temperature. According to the result of activation energy, the sensivity of viscosity to solution temperature is higher for AN-AM copolymers synthesized at higher polymerization temperature. The result of thermal analysis shows that the copolymers obtained at higher polymerization temperature are easier to cyclization evidenced from lower initiation temperature. The weight loss behavior changed irregularly with polymerization temperature due to irregular change of liberation heat.

Synthesis and Characterization of Linear and Star-shaped Poly(lactic acid) Stereo-block Copolymers (선형 및 스타형 폴리락트산 입체블록 공중합체의 합성 및 물성)

  • 이선영;김지흥
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.638-645
    • /
    • 2000
  • Linear and star-shaped, poly(lactic acid) (PLA) stereo-block copolymers were synthesized by sequential polymerization of DL-lactic acid and L-lactide in the presence of diol or polyol compounds. The molecular weight of block copolymers could be controlled to some extent by the variation of alcohol content. These block copolymers had relatively narrow molecular weight distributions. The glass transition temperature and melting temperature of block copolymers appeared at around 5$0^{\circ}C$ and 100~14$0^{\circ}C$, respectively. The block copolymers were found to crystallize even at the high D-stereoisomer concentration of 35 mol%, in contrast to the amorphous nature of the random copolymer with similar composition. Also we could observe the crystallinity of PLA stereo-block copolymers varying with annealing temperature and time.

  • PDF

Synthesis and Characterization of Organic Light-Emitting Copolymers Containing Naphthalene

  • Kim, Jung-Sik;Heo, Jun;Kang, Peng-Tao;Kim, Jin-Hak;Jung, Sung-Ouk;Kwon, Soon-Ki;Kim, Un-Kyung;Kim, Yun-Hi
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • Conjugated PPV-derived block copolymers containing 2-ethylhexyloxynaphthalene unit were synthesized and characterized in this study. The resulting polymers were soluble in common organic solvents and showed good thermal stabilities, The weight-average molecular weights ($M_w$) of the copolymers ranged from 246,000 to 475,000 with PDIs of $1.3{\sim}2.1$. The optical properties of these polymers, measured both in a chloroform solution and on a film, showed a maximum absorption at $405{\sim}476\;nm$ for Copolymers $I{\sim}VIII$. In the PL spectra, Copolymers $I{\sim}VIII$ showed maximum peaks at $510{\sim}566\;nm$. The HOMOs, LUMOs and band gaps of the PPV derivatives of Copolymers $I{\sim}VIII$ were $5.30{\sim}5.77$, $3.04{\sim}3.24$, and $2.5{\sim}2.2\;eV$, respectively, The multi-layered, light-emitting diodes of ITO/PEDOT/copolymers/LiF/Al exhibited turn-on voltages of $6{\sim}2.5\;V$ Copolymer VIII exhibited the maximum brightness of $3.657\;cd/m^2$. Particularly, Copolymer VII, with an identical composition of MEH-PPV and naphthalene-PPV, showed a maximum luminance efficiency and power efficiency of 2,63 cd/A and 1.06 lm/W, respectively.