• Title/Summary/Keyword: coplanar waveguide feeding

Search Result 12, Processing Time 0.023 seconds

Design of Loop Antenna Using Coplanar Waveguide Feeding Method (동일면 도파관 급전방식을 이용한 루프안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.55-56
    • /
    • 2017
  • In this paper, a wideband loop antenna is designed using a CPW feeding method for indoor digital TV applications. The proposed loop antenna consists of a square loop and two circular sectors which connect the loop with central feed points, and the CPW feed line is inserted in the lower circular sector. The CPW feed line is designed to match with the 75 ohm port impedance for DTV applications, and the ground slots are etched in order to improve the impedance matching in the middle frequency region. The optimized antenna is fabricated on FR4 substrate, and the experiment results show that it operates in the frequency band of 463-1,280 MHz for a VSWR < 2, which assures the operation in the DTV band.

  • PDF

A Technique for Broadbanding the CPW-Fed Bow-Tie Slot Antenna

  • Kim Sung-Hak;Wen Lijun;Ko Han-Woong;park Dong-Hee;Ahn Bierng-Chearl
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • In this paper, a technique is presented for broadbanding the bow-tie slot antenna fed by a CPW(coplanar waveguide). The bandwidth performance of existing bow-tie slot designs is greatly enhanced by optimizing the slot shape and properly adjusting the characteristic impedance of the coplanar waveguide feeding the slot. To connect the 50-ohm input coaxial line to the CPW feed line, a linear taper in the CPW is employed. The designed antenna shows a 3.5 $\~$ 10.0 GHz impedance bandwidth, a 3.5 $\~$ 6.0 GHz pattern bandwidth, and a 5.5 $\~$ 7.5 dBi gain over 3.5 $\~$ 6.0 GHz. Above 6.0 GHz, the antenna radiation pattern appreciably deviates from the typical dipolar pattern.

Design of internal dielectric ceramic antennas for IMT-2000 handset (IMT-2000용 단말기 내장형 유전체 세라믹 안테나 설계)

  • 심성훈;강종윤;박용욱;윤석진;윤영중;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.968-971
    • /
    • 2001
  • In this paper, internal antennas for IMT-2000 handset(1.92∼2.17 GHz) were designed to be capable of being mounted on the circuit-board with a CPW(coplanar waveguide) feeding structure. The chip antennas were miniaturized to a greater extent by fabricating multilayer high dielectric ceramic($\varepsilon$$\sub$r/=7.8) hexahedron. The proposed antennas has λ/4 monopole element with helical structure in the multilayer dielectric ceramic hexahedron. The simulated and measured results were invesgated with width, length, and thickness of helical structure in the hexahedron.

  • PDF

Improved wearable, breathable, triple-band electromagnetic bandgap-loaded fractal antenna for wireless body area network applications

  • Mallavarapu Sandhya;Lokam Anjaneyulu
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.571-580
    • /
    • 2024
  • A compact triple-band porous electromagnetic bandgap structure-loaded coplanar-waveguide-fed wearable antenna is introduced for applications of wireless body area networks. The porous structure is aimed to create a stopband or bandgap in the electromagnetic spectrum and increase breathability. The holes in the bottom electromagnetic bandgap surface increase the inductance, which in turn increases the bandwidth. The final design resonates at three bands with impedance bandwidths of 264 MHz, 100 MHz, and 153 MHz and maximum gains of 2.18 dBi, 6.75 dBi, and 9.50 dBi at 2.45 GHz, 3.5 GHz, and 5.5 GHz, respectively. In addition, measurements indicate that the proposed design can be deformed up to certain curvature and withstand human tissue loading. Moreover, the specific absorption rate remains within safe levels for humans. Therefore, the proposed antenna can suitably operate in the industrial, scientific, and medical, Bluetooth, Wi-Fi, and WiMAX bands for potential application to wireless body area networks.

An RFID Tag Using a Planar Inverted-F Antenna Capable of Being Stuck to Metallic Objects

  • Choi, Won-Kyu;Son, Hae-Won;Bae, Ji-Hoon;Choi, Gil-Young;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.216-218
    • /
    • 2006
  • This letter presents the design for a low-profile planar inverted-F antenna (PIFA) that can be stuck to metallic objects to create a passive radio frequency identification (RFID) tag in the UHF band. The designed PIFA, which uses a dielectric substrate for the antenna, consists of a U-slot patch for size reduction, several shorting pins, and a coplanar waveguide feeding structure to easily integrate with an RFID chip. The impedance bandwidth and maximum gain of the tag antenna are about 0.3% at 914 MHz for a voltage standing wave ratio (VSWR) of less than 2 and 3.6 dBi, respectively. The maximum read range is about 4.5 m as long as the tag antenna is on a metallic object.

  • PDF

Design for Triple Band Patch Array Antenna with High Detection Ability

  • Kim, In-Hwan;Min, Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.214-223
    • /
    • 2013
  • This paper proposes a theoretical analysis of hidden device detection and a design of multiband circular polarization patch array antenna for non-linear junction detector system application. A good axial ratio of circular polarization patch antenna is realized by a new approach that employs inclined slots, two rectangular grooves and a truncated ground for the conventional antenna. A good axial ratio of the 1.5 dB lower is measured by having an asymmetric gap distance between the ground planes of the coplanar waveguide feeding structure. The common ground plane of the linear array has an optimum trapezoidal slot array to reduce the mutual coupling without increasing the distance between the radiators. The higher gain of about 1 dBi is realized by using the novel common ground structure. The measured return loss, gain, and axial ratio of the proposed single radiator, as well as the proposed array antennas, showed a good agreement with the simulated results.

Tunable-Slot-Type Ground Radiation Antenna with Dual Band Operation Using LC Resonator

  • Zahid, Zeeshan;Kim, Hyeongdong
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.71-75
    • /
    • 2017
  • A dual-band tunable-slot-type ground radiation antenna is proposed. The feeding structure consists of a coplanar waveguide and a lumped capacitor to excite currents for first- and second-order resonant modes of the ground. The resonant frequencies of both bands are controlled using a series combination of a capacitor and an inductor. The proposed design may be an attractive choice for mobile devices owing to its compact geometry and tunable operating frequencies. The measurement and simulation results of the proposed antenna show good agreement, indicating good impedance matching and radiation performance.

CPW-Fed π-Shaped Antenna for Wideband (CPW급전 광대역 파이형 안테나)

  • Kang, Young-Man;Ceong, Hyi-Thaek;Rhee, Seung-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.291-298
    • /
    • 2018
  • In this paper, we propose an antenna that improves narrow band characteristics which is a disadvantage of inverted-F type antenna and utilizes the structural advantages of small size and low profile by modifying the inverted-F type antenna structure and applying CPW feeding method. Experimental results show that the broadband characteristic of about 40% at the center frequency of 3 GHz is seen, and it is found that the narrow band characteristic which is a disadvantage of the conventional inverted F antenna can be improved. The radiation pattern showed almost omnidirectional characteristics and the maximum gain was about 2.0dBi.

Design of a Multiple Band-notched Wideband Circular Slot Antenna with Arc-shaped Slots

  • Yeo, Junho;Park, Cheol-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • A design method to achieve multiple band-rejection characteristics in a wideband circular slot antenna is presented. First, a wideband circular slot antenna fed by a coplanar waveguide is designed to operate in the frequency range between 2.3 and 11GHz, which covers WLAN, WiBro, WiMAX, and UWB frequency bands. Next, resonant frequency variations of rejection bands are examined with respect to different slot locations and lengths when slots are inserted on the ground conductor and the circular patch of the antenna. When arc-shaped slots are placed close to the circular transition from a feeding part, multiple notch bands are obtained. In this case, a half of the guided wavelength of the first notch band corresponds to the slot length and other notch bands are integer-multiple of the first band. Single notch band can be obtained when the slot is located off the transition part. Based on this study, a wideband circular slot antenna with five band-rejection frequency bands at 2.45, 3.5, 4.9, 7.35, and 9.8GHz is designed and fabricated. The first arc-shaped slots are located in the ground conductor close to the circular transition from a feeding part to generate notch bands at 2.45, 4.9, 7.35, and 9.8GHz, while the second slot for 3.73 GHz is placed on top side in the circular patch. The proposed design method is validated by good agreement between the simulated and measured results.

Broadband Patch Antenna with the Air-Dielectric for the Human Counting System (휴먼 카운팅 시스템을 위한 공기 유전체 층을 갖는 광대역 패치 안테나)

  • Choi, Hyun-Ho;Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.539-544
    • /
    • 2017
  • In this paper, the broadband patch antenna for human counting systems is designed and fabricated using by the air dielectric substrate. Proposed antenna has a patch structure of the square structure with a 5 mm air layer and the vertical connection between the patch antenna and CPW feeding line is realized the stepped impedance structure. Optimized antenna through a 3D EM simulator is fabricated on a jig by manufacturing an antenna jig using a 3D printer with a size of 16.6 * 16.6 * 5 mm3. Proposed antenna is measured with the maximum gain of 5.71 dBi and the VSWR of below 2:1 at a frequency of 7.2 to 9.8 GHz. Also, a half power beam width characteristic of the antenna is measured $70^{\circ}$.