• Title/Summary/Keyword: coplanar waveguide(CPW)

Search Result 174, Processing Time 0.021 seconds

A Comparison of RF Properties of Bonding Pad in Flip-Chip Packaging (플립 칩 실장에 있어 본딩 패드 패턴의 고주파 특성 비교)

  • 박현식;성규제;김진성;이진구
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.27-31
    • /
    • 2003
  • RF characteristics of CPW(coplanar waveguide) pattern with bonding pads used in flip-chip packaging of GaAs is studied in the frequency range of 1 GHz to 35 GHz. Simulation, fabrication and evaluation are performed for the proposed patterns. Measurement results show proposed patterns have similar properties of $S_{11}$below -31 dB and $S_{21}$ above -0.19 dB with typical CPW In addition RF properties are improved with the increase of width of ground line. This indicates CPW structure with bonding pads keeps RF characteristics of typical CPW.

  • PDF

Vector Network Analyzer Ferromagnetic Resonance Study of Py Thin Films (Vector Network Analyzer를 이용한 Py 박막의 강자성공명연구)

  • Shin, Yong-Hwack;Ha, Seung-Seok;Kim, Duck-Ho;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • Ferromagnetic resonance (FMR) measurement is an important experimental technique for the study of magnetic dynamics. We designed and set up the vector network analyzer ferromagnetic resonance (VNA-FMR) measurement system with home made coplanar waveguides (CPW). We examined 10-, 20-, 40-nm thick Py thin films to test the performance of the VNA-FMR measurement system. We measured S-parameter (transmission/reflection coefficient) of Py thin films on a CPW. Resonance frequency is investigated from 2.5 to 7 GHz for a field range from 0 to 490 Oe. The VNA-FMR data shows the resonance frequency increment when the external magnetic field increases. We also investigated Gilbert damping constant of Py thin film using resonance frequency (${\omega}_r$) and linewidth ($\Delta\omega$). After investigating dependence of thickness, we find that an decrease in S-parameter intensity as Py thin film thickness decreases. And the FMR results show that the effective saturation magnetization, $M_{eff}$, increase from 7.205($\pm$0.013) kOe to 7.840($\pm$0.014) kOe, while the film thickness varies from 10 to 40 nm.

Ka-band Power Amplifiers for Short-range Wireless Communication in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS공정을 이용한 Ka 대역 근거리 무선통신용 전력증폭기 설계)

  • He, Sang-Moo;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.131-136
    • /
    • 2008
  • Two Ka-band 3-stage power amplifiers were designed and fabricated using $0.18-{\mu}m$ CMOS technology. For low loss matching networks for the amplifiers, two substrate-shielded transmission line structures, having good modeling accuracy up to 40 GHz were used. The measured insertion loss of substrate-shielded microstrip-line (MSL) was 0.5 dB/mm at 27 GHz. A 3-stage CMOS amplifier using substrate-shielded MSL achieved a 14.7-dB small-signal gain and a 14.5-dBm output power at 27 GHz in a compact chip area of 0.83$mm^2$. The measured insertion loss of substrate-shielded coplanar waveguide (CPW) was 1.0 dB/mm at 27 GHz. A 3-stage amplifier using substrate-shielded CPW achieved a 12-dB small-signal gai and a 12.5-dBm output power at 26.5 GHz. This results shows a potential of CMOS technology for low cost short-range wireless communication components and system.

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.

A Novel Oscillator Utilizing Corrugated CPW EBG Structure with Reduced Phase Noise and Improved Harmonic Characteristics (Corrugated CPW EBG 구조를 이용한 낮은 위상잡음과 향상된 고조파 특성을 갖는 새로운 형태의 발진기)

  • Hwang, Cheol-Gyu;Myung, Noh-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.101-106
    • /
    • 2005
  • This paper presents a new microwave oscillator incorporating a corrugated coplanar waveguide (CCPW) electromagnetic bandgap (EBG) structure as its terminating resonance component. The use of a compact CCPW EBG structure was effective in reducing the phase noise and improving the harmonic characteristics of the microwave oscillator circuit without additional backside processing and drastic size increment. The fully planar CCPW oscillator oscillating at the frequency of 5.41 GHz showed a phase noise characteristic of -90.7 dBc/Hz at 100kHz offset and a second harmonic suppression of 42.67 dB.

  • PDF

Novel Phase Noise Reduction Method for CPW-Based Microwave Oscillator Circuit Utilizing a Compact Planar Helical Resonator

  • Hwang, Cheol-Gyu;Myung, Noh-Hoon
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.529-532
    • /
    • 2006
  • This letter describes a compact printed helical resonator and its application to a microwave oscillator circuit implemented in coplanar waveguide (CPW) technology. The high quality (Q)-factor and spurious-free characteristic of the resonator contribute to the phase noise reduction and the harmonic suppression of the resulting oscillator circuit, respectively. The designed resonator showed a loaded Q-factor of 180 in a chip area of only 40% of the corresponding miniaturized hairpin resonator without any spurious resonances. The fully planar oscillator incorporated with this resonator showed an additional phase noise reduction of 10.5 dB at a 1 MHz offset and a second harmonic suppression enhancement of 6 dB when compared to those of a conventional CPW oscillator without the planar helical resonator structure.

  • PDF

A Design for a CPW-Fed Monopole Antenna with Two Modified Half Circular Rings for WLAN/WiMAX Operations

  • Kim, Woo-Su;Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.159-166
    • /
    • 2015
  • In this paper, a novel design for a triple-band coplanar waveguide (CPW)-fed monopole antenna for WLAN/WiMAX operations is proposed. The proposed antenna is printed on an FR4 substrate with an area of 22.0 mm × 30.0 mm, a thickness of 1.0 mm, and a relative permittivity of 4.4. The effects of various parameters of the proposed for triple band operation is investigated. Two half circular rings and a microstrip feed line are fabricated on the substrate to achieve triple band operation and good impedance matching. Prototypes of the proposed antenna have been fabricated and tested. Experiment results reveal that the measured return loss exhibits an acceptable agreement with the simulated return loss and satisfies the impedance bandwidth requirement of -10 dB, while simultaneously covering the WLAN and WiMAX bands. In addition, the proposed antenna shows good radiation characteristics and gains in the three operating bands.

Flexible Zeroth-Order Resonant(ZOR) Antenna Independent of Curvature Diameter (곡률에 독립적인 플렉서블 기판 위에 설계된 영차 공진 안테나)

  • Lim, In-Seop;Chung, Tony J.;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • In this paper, we propose a flexible zeroth-order resonant(ZOR) antenna. Its zero phase constant ensures that the antenna performance is independent of substrate deformation. A composite right/left-handed transmission line is designed based on coplanar waveguide technology to realize the zeroth-order resonance phenomenon. The CRLH is an implementation of metamaterial(left handed material) which is composed of shunt inductance and series capacitance. In order to yield additional circuital parameter, chip inductor and gap capacitor is added, respectively. The proposed ZOR antenna provides good performances: reasonable bandwidth(6.5 %) and peak gain(0.69~1.39 dBi). Simulated and measured results show that the antenna's resonant frequencies and radiation patterns are almost unchanged at different curvature diameters of 30, 50, 70 mm, as well as for a flat surface.

Analysis of Coplaner $LiNBO_3$ Waveguide Structures Applicable Electrooptic Modulator with FDTD method

  • Lee, Byung-Je;Byun, Joon-Ho;Kim, Nam-Young;Kim, Jong-Heon;Lee, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1211-1217
    • /
    • 2000
  • The three-dimensional finite-difference time-domain (FDTD) method and the two-dimensional quasi-static formulation have been used to calculate the characteristic impedance and the microwave effective index of coplanar waveguide structures on Lithium Niobate ($LiNBO_3$) single crystal substrates with a yttria-stabilized zirconia (YSZ) or $SiO_2$ buffer layer. The results shown can be a good source to predict the modulator characteristics. The effects of the thin buffer layer and anisotropy of the $LiNBO_3$ crystal (x-cut and z-cut) are discussed. The comparison between the FDTD and quasi-static results shows good agreement. In this paper, the efficient modeling technique of the FDTD method for the coplanar waveguide (CPW) structures based on an anisotropic substrate with a thin buffer layer is developed.

  • PDF

A New CPW Dual Band Wilkinson Power Divider Using Composite Right/Left-Handed Transmission Line (Composite Righg/Left-Hand 전송선로를 이용한 새로운 이중대역의 CPW 윌킨슨 전력 분배기)

  • Zhang, Zufu;Wang, Yang;Yoon, Ki-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2015
  • In this paper, a new kind of wideband, low-loss composite right/left-handed (CRLH) transmission line (TL) and a Wilkinson power divider are presented. The TL is composed of a parallel meander inductor and a series cutting capacitor based on coplanar waveguide (CPW) structure. The power divider is designed by substituting the CRLH-TL into the conventional transmission line. The experiment results show that the TL has a good agreement with the desired results, exhibiting the return losses under 12 dB from 8.4 GHz to 34.4 GHz. The operating frequencies of the power divider are 12.05 GHz to 13.15 GHz and 16.50 GHz to 19.30 GHz, respectively. The 20 dB bandwidths are 8.9 % and 17.9 %, respectively. Typical experimental measurements are conducted and compared with the simulated results.