• Title/Summary/Keyword: cooperative transmission

Search Result 353, Processing Time 0.024 seconds

Cooperative Transmission Scheme for Railway Wireless Communication System (철도 무선통신 시스템에서의 협력 전송기법)

  • Park, Jae Jung;Kim, Yoon Hyun;Kim, Jin Young;Yang, Jae Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.75-77
    • /
    • 2012
  • In recent years, with the development of various transportation, railway evolved a lot. With advanced rail system, efficient communication system was required. for the delivery of accurate information of railway communications systems. Accordingly, railway communication system has evolved in a variety of ways. Cooperative communication method was proposed railway minimize the effects of fading in wireless communications and more efficient communication. In this paper, we present cooperative transmission techniques and channel characteristics and examples, and simulation results.

Performance Comparisons of Cooperative Multi-relay System with/without Opportunistic Transmission in Rayleigh Fading Channel (Rayleigh 페이딩 채널에서 기회전송 유무에 따른 협동 다중 릴레이 시스템의 성능비교)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.25-33
    • /
    • 2008
  • The performance of power constrained cooperative multi-relay system with/without opportunistic transmission is considered in Rayleigh fading. The three power allocation methods are considered to maximize the system performance when the total network power is limited. It is analyzed that the opportunistic power allocation strategy has the best performance enhancement compared to the other power allocation strategies. The opportunistic relays increases with the total network power, which induce the higher diversity order of the opportunistic cooperative diversity, consequently improves the end-to-end outage probability.

  • PDF

Partner Assignment Algorithm for Cooperative Diversity in mobile communication systems (이동통신 시스템에서 Cooperative Diversity를 위한 Partner Assignment Algorithm)

  • Jung, Young-Seok;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.81-82
    • /
    • 2006
  • Most work on cooperative diversity has assumed that the cooperating group (source and partners) and the associated average channel conditions between terminals (source, partners, and destination) are predetermined. In practical situations, however, it is important to develop the efficient algorithms for assigning the terminals with good inter-user channels for cooperating groups. In this paper, we propose the partner assignment algorithm for cooperative diversity in mobile communication systems. The proposed partner assignment algorithm is investigated by using the path loss model for mobile communication systems. Numerical results show that the proposed partner assignment algorithm provides the comparable probability of cooperative transmission to the partner assignment algorithm using exhaustive search. The probability of cooperative transmission increases with the number of users, which gives potential benefits of practical implementation to user cooperation in mobile communication systems.

  • PDF

Clustering-based Cooperative Routing using OFDM for Supporting Transmission Efficiency in Mobile Wireless Sensor Networks (모바일 무선 센서네트워크에서 전송 효율 향상을 지원하기 위한 OFDM을 사용한 클러스터링 기반의 협력도움 라우팅)

  • Lee, Joo-Sang;An, Beong-Ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we propose a Clustering-based Cooperative Routing using OFDM (CCRO) for supporting transmission efficiency in mobile wireless sensor networks. The main features and contributions of the proposed method are as follows. First, the clustering method which uses the location information of nodes as underlying infrastructure for supporting stable transmission services efficiently is used. Second, cluster-based cooperative data transmission method is used for improving data transmission and reliability services. Third, OFDM based data transmission method is used for improving data transmission ratio with channel efficiency. Fourth, we consider realistic approach in the view points of the mobile ad-hoc wireless sensor networks while conventional methods just consider fixed sensor network environments. The performance evaluation of the proposed method is performed via simulation using OPNET and theoretical analysis. The results of performance evaluation show improvement of transmission efficiency.

Transmission Diversity Scheme Using Antenna Array of Small Cell (소형 기지국의 안테나 배열을 이용한 전송 다이버시티 기법)

  • Paik, Jong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.301-303
    • /
    • 2016
  • This paper proposes a method providing diversity gain using small base stations in a cell coverage in order to improve diversity gain. The small base stations and the conventional base station consist a virtual MIMO array by using the cooperative communication scheme. Also, transmission diversity scheme is applied. A mobile user can receive the signals having the improved reliability by the applied transmission diversity scheme and the cooperative communication scheme.

A 60GHz Wireless Cooperative Communication System Based on Switching Beamforming

  • Shi, Wei;Wang, Jingjing;Liu, Yun;Niu, Qiuna;Zhang, Hao;Wu, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1590-1610
    • /
    • 2016
  • The challenge of penetrating obstacles along with impact from weak multipath effects makes 60GHz signal very difficult to be transmitted in non-line of sight (NLOS) channel. So 60GHz system is vulnerable to obstructions and thus likely results in link interruption. While the application of cooperative technology to solve link blockage problemin 60GHz system should consider the characteristic of directional transmission for 60GHz signal. Therefore in this paper a system is proposed to solve the link blockage problem in 60GHz NLOS communication environment based on the concept of cooperation and also the beamforming technology, which is the basis of directional transmission for 60GHz communication system. The process of anti-blockage solution with cooperative communication is presented in detail, and the fast switching and recovery schemes are well designed. The theoretical values of symbol error rate (SER) using decode and forward (DF) cooperation and amplify and forward (AF) cooperation are presented respectively when the common channel interference exists. Simulation results demonstrate that the performance based on DF cooperation is better than the performance based on AF cooperation when directional transmission is used.

Tradeoff between Energy-Efficiency and Spectral-Efficiency by Cooperative Rate Splitting

  • Yang, Chungang;Yue, Jian;Sheng, Min;Li, Jiandong
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • The trend of an increasing demand for a high-quality user experience, coupled with a shortage of radio resources, has necessitated more advanced wireless techniques to cooperatively achieve the required quality-of-experience enhancement. In this study, we investigate the critical problem of rate splitting in heterogeneous cellular networks, where concurrent transmission, for instance, the coordinated multipoint transmission and reception of LTE-A systems, shows promise for improvement of network-wide capacity and the user experience. Unlike most current studies, which only deal with spectral efficiency enhancement, we implement an optimal rate splitting strategy to improve both spectral efficiency and energy efficiency by exploring and exploiting cooperation diversity. First, we introduce the motivation for our proposed algorithm, and then employ the typical cooperative bargaining game to formulate the problem. Next, we derive the best response function by analyzing the dual problem of the defined primal problem. The existence and uniqueness of the proposed cooperative bargaining equilibrium are proved, and more importantly, a distributed algorithm is designed to approach the optimal unique solution under mild conditions. Finally, numerical results show a performance improvement for our proposed distributed cooperative rate splitting algorithm.

Layer based Cooperative Relaying Algorithm for Scalable Video Transmission over Wireless Video Sensor Networks (무선 비디오 센서 네트워크에서 스케일러블 비디오 전송을 위한 계층 기반 협업 중계 알고리즘*)

  • Ha, Hojin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2022
  • Recently, in wireless video sensor networks(WVSN), various schemes for efficient video data transmission have been studied. In this paper, a layer based cooperative relaying(LCR) algorithm is proposed for minimizing scalable video transmission distortion from packet loss in WVSN. The proposed LCR algorithm consists of two modules. In the first step, a parameter based error propagation metric is proposed to predict the effect of each scalable layer on video quality degradation at low complexity. In the second step, a layer-based cooperative relay algorithm is proposed to minimize distortion due to packet loss using the proposed error propagation metric and channel information of the video sensor node and relay node. In the experiment, the proposed algorithm showed that the improvement of peak signal-to-noise ratio (PSNR) in various channel environments, compared to the previous algorithm(Energy based Cooperative Relaying, ECR) without considering the metric of error propagation.The proposed LCR algorithm minimizes video quality degradation from packet loss using both the channel information of relaying node and the amount of layer based error propagation in scalable video.

Relay-assisted Multiple Access Channel Protocol for Cooperative Diversity

  • Kim, Dong-Hyun;Kim, Gil;Lee, Kwang-Bok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.1-8
    • /
    • 2009
  • Cooperative diversity is a novel technique to improve diversity gains, capacity gains, and energy saving. This technique involves multiple terminals sharing resources in order to build a virtual antenna array in a distributed fashion. In this paper, we propose a multi-user cooperative diversity protocol called Relay-assisted Multiple Access Channel(R-MAC) that allows multiple source terminals to transmit their signals simultaneously and the relay terminal forwards the aggregated signal received from the source terminals to the destination terminal. The proposed protocol converts the distributed antenna channels into an effective MIMO channel by exploiting a relay, increasing both diversity gain and system throughput. We investigate the performance of the proposed protocol in terms of outage probability and diversity-multiplexing tradeoff where we assume block fading channel environment. Our simulation results show that the proposed protocol outperforms direct transmission in the high spectral efficiency regime where the conventional cooperative diversity protocols cannot outperform direct transmission.

System Optimization, Full Data Rate and Transmission Power of Decode-and-Forward Cooperative Communication in WSN (WSN환경에서 Decode-and-Forward 협력통신의 시스템 최적화 및 최대전송률과 저전력에 관한 연구)

  • Kim, Gun-Seok;Kong, Hyung-Yun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.7
    • /
    • pp.597-602
    • /
    • 2007
  • In conventional cooperative communication data rate is 1/2 than non cooperative protocols. In this paper, we propose a full data rate DF (Decode and Forward) cooperative transmission scheme. Proposed scheme is based on time division multiplexing (TDM) channel access. When DF protocol has full data rate, it can not obtain diversity gain under the pairwise error probability (PEP) view point. If it increases time slot to obtain diversity gain, then data rate is reduced. The proposed algorithm uses orthogonal frequency and constellation rotation to obtain both full data rate and diversity order 2. Moreover, performance is analyzed according to distance and optimized components that affect the system performance by using computer simulation. The simulation results revealed that the cooperation can save the network power up to 7dB over direct transmission and 5dB over multi-hop transmission at BER of $10^{-2}$. Besides, it can improve date rate of system compared with the conventional DF protocol.