• Title/Summary/Keyword: cooperative transmission

Search Result 353, Processing Time 0.024 seconds

Spectrum Hole Utilization in Cognitive Two-way Relaying Networks

  • Gao, Yuan;Zhu, Changping;Tang, Yibin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.890-910
    • /
    • 2014
  • This paper investigates the spectrum hole utilization of cooperative schemes for the two-way relaying model in order to improve the utilization efficiency of limited spectrum holes in cognitive radio networks with imperfect spectrum sensing. We propose two specific bidirectional secondary data transmission (BSDT) schemes with two-step and three-step two-way relaying models, i.e., two-BSDT and three-BSDT schemes, where the spectrum sensing and the secondary data transmission are jointly designed. In the proposed cooperative schemes, the best two-way relay channel between two secondary users is selected from a group of secondary users serving as cognitive relays and assists the bi-directional communication between the two secondary users without a direct link. The closed-form asymptotic expressions for outage probabilities of the two schemes are derived with a primary user protection constraint over Rayleigh fading channels. Based on the derived outage probabilities, the spectrum hole utilization is calculated to evaluate the percentage of spectrum holes used by the two secondary users for their successful information exchange without channel outage. Numerical results show that the spectrum hole utilization depends on the spectrum sensing overhead and the channel gain from a primary user to secondary users. Additionally, we compare the spectrum hole utilization of the two schemes as the varying of secondary signal to noise ratio, the number of cognitive relays, and symmetric and asymmetric channels.

A Relay and Transmission Mode Selection Scheme to Enhance the Bit Error Rate Performance in Relay Systems (중계기 시스템에서 비트 오류율 성능 향상을 위한 중계기 선택 및 전송 모드 결정 방법)

  • Seo, Jong-Pil;Lee, Myung-Hoon;Lee, Yoon-Ju;Kwon, Dong-Seung;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12A
    • /
    • pp.941-949
    • /
    • 2011
  • In a cooperative communication system with a source node and multiple relays equipping single antenna and a destination node equipping multiple antennas, the selective cooperative spatial multiplexing scheme can obtain spatial multiplexing gain and additional selection diversity gain. But it can degrade a bit error rate performance because some received symbols forwarded from particular relays may be lost by attenuation due to path-loss. We propose a relay and transmission mode selection scheme which selects minimum number of multiple relays having the channel capacity larger than a given data rate and transmission mode which switches spatial multiplexing and spatial diversity mode in cooperation phase to enhance the bit error rate performance. The proposed scheme achieves 1.5~2dB gain at the low SNR range compared with the conventional scheme by obtaining additional spatial diversity gain.

Decode-and-Forward Cooperative Communication Based on IOTA-OFDM/OQAM System (IOTA-OFDM/OQAM 시스템 기반의 복호 후 전송 협력 통신)

  • Kim, Jaejin;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.777-779
    • /
    • 2014
  • In this paper, we consider IOTA-OFDM/OQAM system that improves the transmission power and rate efficiency of conventional OFDM system and propose DF relaying cooperative communication scheme based on the IOTA-OFDM/OQAM system. In the proposed scheme, the destination receives orthogonal signals from source and relay simultaneously and combines using MRC. We demonstrated that the proposed schemes get better BER performance than conventional system because of the diversity gain.

A Nash Bargaining Solution of Electric Power Transactions Embedding Transmission Pricing in the Competitive Electricity Market

  • Kang, Dong-Joo;Kim, Balho H.;Chung, Koo-Hyung;Moon, Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.42-46
    • /
    • 2003
  • The economic operation of a utility in a deregulated environment brings about optimization problems different from those in vertically integrated one[1]. While each utility operates its own generation capacity to maximize profit, the market operator (or system operator) manages and allocates all the system resources and facilities to achieve the maximum social welfare. This paper presents a sequential application of non-cooperative and cooperative game theories in analyzing the entire power transaction process.

Performance Analysis of Multi-Hop Decode-and-Forward Relaying with Selection Combining

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.616-623
    • /
    • 2010
  • In this paper, exact closed-form expressions for outage probability and bit error probability (BEP) are presented for multi-hop decode-and-forward (DF) relaying schemes in conjunction with cooperative diversity, in which selection combining technique is employed at each node. We have shown that the proposed protocol offers remarkable diversity advantage over direct transmission as well as the conventional DF relaying schemes with the same combining technique. We then investigate the system performance when different diversity schemes are employed. It has been observed that the system performance loss due to selection combining relative to maximal ratio combining is not significant. Simulations are performed to confirm our theoretical analysis.

Cooperative Spectrum Sensing using Kalman Filter based Adaptive Fuzzy System for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.287-304
    • /
    • 2012
  • Spectrum sensing is an important functionality for cognitive users to look for spectrum holes before taking transmission in dynamic spectrum access model. Unlike previous works that assume perfect knowledge of the SNR of the signal received from the primary user, in this paper we consider a realistic case where the SNR of the primary user's signal is unknown to both fusion center and cognitive radio terminals. A Kalman filter based adaptive Takagi and Sugeno's fuzzy system is designed to make the global spectrum sensing decision based on the observed energies from cognitive users. With the capacity of adapting system parameters, the fusion center can make a global sensing decision reliably without any requirement of channel state information, prior knowledge and prior probabilities of the primary user's signal. Numerical results prove that the sensing performance of the proposed scheme outperforms the performance of the equal gain combination based scheme, and matches the performance of the optimal soft combination scheme.

Joint optimization of beamforming and power allocation for DAJ-based untrusted relay networks

  • Yao, Rugui;Lu, Yanan;Mekkawy, Tamer;Xu, Fei;Zuo, Xiaoya
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.714-725
    • /
    • 2018
  • Destination-assisted jamming (DAJ) is usually used to protect confidential information against untrusted relays and eavesdroppers in wireless networks. In this paper, a DAJ-based untrusted relay network with multiple antennas installed is presented. To increase the secrecy, a joint optimization of beamforming and power allocation at the source and destination is studied. A matched-filter precoder is introduced to maximize the cooperative jamming signal by directing cooperative jamming signals toward untrusted relays. Then, based on generalized singular-value decomposition (GSVD), a novel transmitted precoder for confidential signals is devised to align the signal into the subspace corresponding to the confidential transmission channel. To decouple the precoder design and optimal power allocation, an iterative algorithm is proposed to jointly optimize the above parameters. Numerical results validate the effectiveness of the proposed scheme. Compared with other schemes, the proposed scheme shows significant improvement in terms of security performance.

Interference Cancellation Scheme for Three-hop Cooperative Relay Networks

  • Zhang, Yinghua;Wang, Lei;Liu, Jian;Peng, Yunfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4446-4462
    • /
    • 2019
  • In this paper, we focus on interference cancellation for three-hop cognitive radio networks (CRNs) over Rayleigh fading channels. In CRNs, secondary users (SUs) are allowed to opportunistically utilize the licensed spectrum during the idle time of primary users (PUs) to achieve spectrum sharing. However, the SUs maybe power constrained to avoid interference and cover a very short transmission range. We here propose an interference cancellation scheme (ICS) for three-hop CRNs to prolong the transmission range of SUs and improve their transmission efficiency. In the proposed scheme, a flexible transmission protocol is adopted to cancel the interference at both secondary relays and destinations at the same time. And a closed-form expression for the secondary outage probability over Rayleigh fading channels is derived to measure the system performance. Simulation results show that the proposed scheme can significantly reduce the secondary outage probability and increase the secondary diversity in comparison with the traditional cases.

Spectral Efficiency Evaluation of Coordinated Multi-point Systems Based on System Level Simulations (멀티 포인트 시스템에서 시스템 레벨 시뮬레이션에 기반을 둔 스펙트럼 효율성 검증)

  • Jung, Bang-Chul;Shin, Won-Yong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2113-2120
    • /
    • 2011
  • In this paper, so as to improve spectral efficiency for cell-boundary users, we introduce a coordinated multi-point (CoMP) system, which is one of inter-cell cooperative transmission strategies studied in 3GPP long-term evolution-advanced (LTE-A) systems, and develop a system-level simulator to evaluate performance. To identify performance improvement of the system with inter-cell cooperative transmission, we select a 3GPP LTE system as a reference, which shows the highest performance among the existing mobile communication systems, and conduct a performance comparison. System-level simulation is performed based on widely-used OPNET tool. We implement modules including central unit (CU), CoMP eNodeB (CeNB), user equipment (UE), and multiple-input multiple-output (MIMO) channel model, while designing the inter-cell cooperative transmission system. Under WINNER wireless channel model and international telecommunication union (ITU) network model environments, we then evaluate the performance of edge users who belong to the lower 5% in terms of spectral efficiency. It is finally shown that throughput of the proposed CoMP system gets improved up to 2.5 times compared to that of the 3GPP LTE reference system.

Design of Cooperative M-1-1 Protocol Using OFDM to Increase Spectrum Utilization in WSN (무선 센서 네트워크의 주파수 사용 효율성 향상을 위한 OFDM을 사용한 협력적 M-1-1 프로토콜 설계)

  • Hwang, Yun-Kyeong;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.766-773
    • /
    • 2007
  • Conventional wireless sensor network(WSN) has limited power and bandwidth. In order to develop multimedia sensor technology, high data rate communication systems are required. Cooperative communication system can help to decrease power consumption through spatial diversity. In cooperative transmission, one partner node assists one sensor node to transmit their data to destination. Instead of using M partners for M sensor nodes, we propose 1 partner for M sensor nodes. Proposed protocol offers similar diversity order as conventional one with much less bandwidth and hardware. It is able to almost reduce scattered nodes interference using orthogonal sub-carriers. In addition, we examined a power allocation between sensor nodes and relay that optimize the system performance.