• Title/Summary/Keyword: cooperative robot

Search Result 170, Processing Time 0.021 seconds

Cooperation of Heterogeneous Robot Team for Localization and Map Building (이종 로봇팀의 협업을 통한 맵 빌딩과 위치추정)

  • Jeong, Jin-Su;Lim, Yun-Won;Kang, Soo-Hyek;Kim, Dong-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper we present cooperation of heterogeneous robot team, composed of a wheeled robot and a helicopter for localization and map building. This heterogeneous robot team can successfully fulfill task by combining the abilities of both robots than single robot because wheeled robot and helicopter have complementing ability. The scenario describes a tightly cooperative task, where the wheeled robot move carrying the helicopter and detect obstacles, if there are obstacles, helicopter take off for map building and land, then robot team move destination avoiding obstacles. We present PID controller for position control of helicopter and transformation algorithm to global coordinate from image pixel coordinate. Experimental result show that the proposed method is valid.

Development of a Robot System for Automatic De-palletizing of Parcels loaded in Rolltainer (롤테이너 적재 소포를 자동으로 디팔레타이징하기 위한 로봇 시스템 개발)

  • Kim, Donghyung;Lim, Eul Gyoon;Kim, Joong Bae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.431-437
    • /
    • 2022
  • This paper deals with a study on the automatic depalletizing robot for parcels loaded in rolltainer of domestic postal distribution centers. Specifically, we proposed a robot system that detect parcels loaded in a rolltainer with a 3D camera and perform de-palletizing using a cooperative robot. In addition, we developed the task flow chart for parcel de-palletizing and the method of retreat motion generation in the case of collision with rolltainer. Then, we implemented the proposed methods to the robot's controller by developing robot program. The proposed robot system was installed at the Anyang Post Distribution Center and field tests were completed. Field tests have shown that the robotic system has a success rate of over 90% for depalletizing task. And it was confirmed that the average tact time per parcel was 7.3 seconds.

A Study on the Optimum Velocity of a Four Wheel Steering Autonomous Robot (4륜조향 자율주행로봇의 최적속도에 관한 연구)

  • Kim, Mi-Ok;Lee, Jung-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. Autonomous driving robot for factory automation has individual four-wheels which are driven by electronic motors. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. A diver-vehicle model is proposed by using the PID control to velocity and trajectory of control autonomous driving robot. To determine the optimum speed of a autonomous driving robot, steady-state circle simulation is carried out with the ADAMS program and MATLAB control model.

Simultaneous Localization and Mapping For Swarm Robot (군집 로봇의 동시적 위치 추정 및 지도 작성)

  • Mun, Hyun-Su;Shin, Sang-Geun;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.296-301
    • /
    • 2011
  • This paper deals with the simultaneous localization and mapping system using cooperative robot. For recognizing environment, swarm robot uses the ultrasonic sensors and vision sensor. Ultrasonic sensors measure the distance information, and vision sensor recognizes the predefined landmark. we used SURF with excellent quality and fast matching in order to recognize landmark. Due to measurement error of sensors, we fusion them using particle filter for accurate localization and mapping. Finally, we show the feasibility of the proposed method through some experiments.

UBA-Sot : An Approach to Control and Team Strategy in Robot Soccer

  • Santos, Juan-Miguel;Scolnik, Hugo-Daniel;Ignacio Laplagne;Sergio Daicz;Flavio Scarpettini;Hector Fassi;Claudia Castelo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.149-155
    • /
    • 2003
  • In this study, we introduce the main ideas on the control and strategy used by the robot soccer team of the Universidad de Buenos hires, UBA-Sot. The basis of our approach is to obtain a cooperative behavior, which emerges from homogeneous sets of individual behaviors. Except for the goalkeeper, the behavior set of each robot contains a small number of individual behaviors. Basically, the individual behaviors have the same core: to move from the initial to-ward the target coordinates. However, these individual behaviors differ because each one has a different precondition associated with it. Each precondition is the combination of a number of elementary ones. The aim of our approach is to answer the following questions: How can the robot compute the preconditions in time\ulcorner How are the control actions defined, which allow the robot to move from the initial toward the final coordinates\ulcorner The way we cope with these issues is, on the one hand, to use ball and robot predictors and, on the other hand, to use very fast planning. Our proposal is to use planning in such a way that the behavior obtained is closer to a reactive than a deliberative one. Simulations and experiments on real robots, based on this approach, have so far given encouraging results.

Wireless Multihop Communications for Frontier cell based Multi-Robot Path Finding with Relay Robot Random Stopping (다중홉 통신 기법을 활용한 네트워크 로봇의 협력적 경로 탐색)

  • Jung, Jin-Hong;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11B
    • /
    • pp.1030-1037
    • /
    • 2008
  • This paper presents an algorithm for the path-finding problem in unknown environments with cooperative and commutative multi-robots. To verify the algorithm, we investigate the problem of escaping through the exit of a randomly generated maze by muti-robots. For the purpose, we adopt the so called frontier cells and cell utility functions, which were used in the exploration problem for the multi-robots. For the wireless communications among the mobile robots, we modify and utilize the so called the random basket routing, a kind of hop-by-hop opportunistic routing. A mobile robot, once it finds the exit, will choose its next action, either escape immediately or stay-and-relay the exit information for the others, where the robot takes one action based on a given probability. We investigate the optimal probability that minimizes the average escaping time (out of the maze to the exit) of a mobile robot.

COORDINATION CHART COLLISION-FREE MOTION OF TWO ROBOT ARMSA

  • Shin, You-Shik;Bien, Zeung-Nam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.915-920
    • /
    • 1987
  • When a task requires two robot arms to move in a cooperative manner sharing a common workspace, potential collision exists between the two robot arm . In this paper, a novel approach for collision-free trajectory planning along paths of two SCARA-type robot arms is presented. Specifically, in order to describe potential collision between the links of two moving robot arms along the designated paths, an explicit form of "Virtual Obstacle" is adopted, according to which links of one robot arm are made to grow while the other robot arm is forced to shrink as a point on the path. Then, a notion of "Coordination Chart" is introduced to visualize the collision-free relationship of two trajectories.of two trajectories.

  • PDF

Application of Herding Problem to a Mobile Robot (이동로봇의 Herding 문제 적용)

  • Kang Min Koo;Lee Jin Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.322-329
    • /
    • 2005
  • This paper considers the application of mobile robot to the herding problem. The herding problem involves a ‘pursuer’ trying to herd a moving ‘evader’ to a predefined location. In this paper, two mobile robots act as pursuer and evader in the fenced area, where the pursuer robot uses a fuzzy cooperative decision strategy (FCDS) in the herding algorithm. To herd evader robot to a predefined position, the pursuer robot calculates strategic herding point and then navigates to that point using FCDS. FCDS consists of a two-level hierarchy: low level motion descriptors and a high level coordinator. In order to optimize the FCDS, we use the multi­thread evolutionary programming algorithm. The proposed algorithm is implemented in the real mobile robot system and its performance is demonstrated using experimental results.

Analysis of dynamic manipulability for multiple cooperating robot system based on matrix decomposition (행렬 Decomposition 방법에 기초한 다중협동 로봇의 동적 조작도 해석)

  • 이지홍;조복기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2705-2708
    • /
    • 2003
  • In this paper, we propose a method that applies matrix decomposition technique to the connection of actuator capabilities of each robot to object acceleration limits for multiple cooperative robot systems. The robot systems under consideration are composed of several robot manipulators and each robot contacts a single object to carry the object while satisfying the constraints described in kinematics as well as dynamics. By manipulating kinematic and dynamic equations of both robots and objects, we at first derive a matrix relating joint torques with object acceleration, manipulate the null space of the matrix, and then we decompose the matrix into three parts representing indeterminancy, connectivity, and redundancy. With the decomposed matrix we derive the boundaries of object accelerations from given joint actuators. To show the validity of the proposed method some examples are given in which the results can be expected by intuitive observation.

  • PDF

Seamless Routing and Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application

  • Lee, Chang-Eun;Im, Hyun-Ja;Lim, Jeong-Min;Cho, Young-Jo;Sung, Tae-Kyung
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.262-272
    • /
    • 2015
  • In particular, for a practical mobile robot team to perform such a task as that of carrying out a search and rescue mission in a disaster area, the network connectivity and localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a Global Positioning System is unavailable. This paper proposes the new collective intelligence network management architecture of multiple mobile robots supporting seamless network connectivity and cooperative localization. The proposed architecture includes a resource manager that makes the robots move around and not disconnect from the network link by considering the strength of the network signal and link quality. The location manager in the architecture supports localizing robots seamlessly by finding the relative locations of the robots as they move from a global outdoor environment to a local indoor position. The proposed schemes assuring network connectivity and localization were validated through numerical simulations and applied to a search and rescue robot team.