• Title/Summary/Keyword: cooperation of networks

Search Result 551, Processing Time 0.022 seconds

Adaptive Cooperation for Bidirectional Communication in Cognitive Radio Networks

  • Gao, Yuan;Zhu, Changping;Deng, Zhixiang;Tang, Yibin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1279-1300
    • /
    • 2017
  • In the interweave cognitive networks, the interference from the primary user degrades the performance of the cognitive user transmissions. In this paper, we propose an adaptive cooperation scheme in the interweave cognitive networks to improve the performance of the cognitive user transmissions. In the proposed scheme for the bidirectional communication of two end-source cognitive users, the bidirectional communication is completed through the non-relay direct transmission, the one-way relaying cooperation transmission, and the two-way relaying cooperation transmission depending on the limited feedback from the end-sources. For the performance analysis of the proposed scheme, we derive the outage probability and the finite-SNR diversity multiplexing tradeoff (f-DMT) in a closed form, considering the imperfect spectrum sensing, the interference from the primary user, and the power allocation between the relay and the end-sources. The results show that compared with the direct transmissions (DT), the pure one-way relaying transmissions (POWRT), and the pure two-way relaying transmissions (PTWRT), the proposed scheme has better outage performance. In terms of the f-DMT, the proposed scheme outperforms the full cooperation transmissions of the POWRT and PTWRT.

Cooperation Models and Cooperative Routing for Exploiting Hop-by-Hop Cooperative Diver sity in Ad Hoc Networks

  • Shin, Hee-Wook;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1559-1571
    • /
    • 2011
  • In wireless ad hoc networks, nodes communicate with each other using multihop routed transmission in which hop-by-hop cooperative diversity can be effectively employed. This paper proposes (i) two cooperation models for per-link cooperation (PLC) and per-node cooperation (PNC) for exploiting cooperative diversity in wireless ad hoc networks and (ii) a cooperative routing algorithm for the above models in which best relays are selected for cooperative transmission. First, two cooperation models for PLC and PNC are introduced and represented as an edge-weighted graph with effective link quality. Then, the proposed models are transformed into a simplified graph and a cooperative routing algorithm with O(n2) time is developed, where n is the number of nodes in the network. The effectiveness of the algorithm is confirmed for the two cooperation models using simulation.

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.

Synergy: An Overlay Internetworking Architecture and Implementation

  • Kwon, Min-Seok;Fahmy, Sonia
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.181-190
    • /
    • 2010
  • A multitude of overlay network designs for resilient routing, multicasting, quality of service, content distribution, storage, and object location have been proposed. Overlay networks offer several attractive features, including ease of deployment, flexibility, adaptivity, and an infrastructure for collaboration among hosts. In this paper, we explore cooperation among co-existing, possibly heterogeneous, overlay networks. We discuss a spectrum of cooperative forwarding and information sharing services, and investigate the associated scalability, heterogeneity, and security problems. Motivated by these services, we design Synergy, a utility-based overlay internetworking architecture that fosters overlay cooperation. Our architecture promotes fair peering relationships to achieve synergism. Results from Internet experiments with cooperative forwarding overlays indicate that our Synergy prototype improves delay, throughput, and loss performance, while maintaining the autonomy and heterogeneity of individual overlay networks.

INDIVIDUAL AND SOCIAL INCENTIVES VERSUS R&D NETWORK RESTRICTION

  • ALGHAMDI, MOHAMAD
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.329-350
    • /
    • 2019
  • This paper examines individual and social strategies to form profitable cooperation networks. These two types of strategies measure network stability and efficiency that may not meet in a single network. We apply restrictions on knowledge flows (R&D spillovers) and links formation to integrate these benefits into structures that ensure high outcomes for both strategies. The results suggest that linking the spillovers to the firms' positions and restricting cooperation contribute to reducing the conflict between the individual and social strategies in the development of cooperative networks.

Spatial Chracteristics of the Inter-firm Networks in the Industrial Clusters in Seoul : Focus on Computer Industry (기업간 네트워크와 산업집적지의 성장특성 -한국 컴퓨터산업을 사례로-)

  • 김선배
    • Journal of the Korean Regional Science Association
    • /
    • v.13 no.2
    • /
    • pp.55-74
    • /
    • 1997
  • This paper investigates the spatial characteristics of networks, which arise as a firm's strategy to enhance its competitiveness to cope with the changing economic environments characterized by technological changes and increasing competitiveness. The theoretical framework in this study proposes that networks emerge as a firm's strategies to promote its competitiveness through the vertical/horizontal disintegration of the production system. Futhermore, regional industries of networks. The study examines the types of cooperation and the spatial boundary of the computer industry networks in Korea. Questionnaire survey was conducted on 1, 128 computer companies which had more than 10 employees, with 126 questionnaires being used for analysis. In addition, newpaper articles were used to supplement the foregoing work on network characteristics. The review of these articles covers the period from Jan. 1994 to June 1996. Major findings of this study are as follows: The spatial range of cooperative networks varies according to the specific characters of cooperation(R & D, production, and seles). Intralocal networks are being developed in Kangnam and Youido area, the computer industry agglomeration clusres of Seoul. There are the regional differnces in the agents and contents of cooperation. In intra-national R & D and production networks, regional differnces in agglomeratins and non-agglomerations are not detercted. Most networks of this type are found between large firms and small firms. In contrast, foregn R & D and production networks, which are operated mostly by large firms, are found in Kangnam, Youido, and CBD. Intra-national and foreign productino networks are also focused in Kangnam, Youido, and CBD. Small firms are playing an active role in making this type of cooperation possible. In the perspective of localization-globalization, Korean computer industry can be analyzed in two respects: industrial and regional. The localization of small firms and the localization-globalization of large firms' networks are being developed in industrial contexts, while the localization-globalization of agglomerations and the localization of non-agglomerations networks are being developed in regional contexts. As networks for the localization-globalization of industry are growing in agglomerations, interfirm networks could be related to trends in the formation or intensification of industrial agglomerations. industrial agglomeration areas function as a facilitator of localization through subcontracts, intraregional network and interregional network. They also facilitate globalization via foregn networks. In non-agglomeratin areas, localization networks, which are connected with agglomeration areas via subcontracting, interregional R & D. or production cooperation.

  • PDF

A Network Analysis on Industry-University Cooperation based on Big Data Analytics (빅데이터 기반 산학협력 네트워크 분석)

  • Dae-Hee Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.109-124
    • /
    • 2021
  • In this paper, the structural characteristics of Industry-University cooperation networks are analyzed using network analysis. Recent studies have shown that technological cooperation and joint research has a positive effect on R&D performance. In order to boost innovation performance, various types of cooperative activities and governmental policy supports for major R&D stakeholders(i.e. universities, laboratories, etc.) are provided. However, despite these efforts, the outcome is still insufficient, so it is time to prepare for a plan to build an innovative network to strengthen university-centered Industry-University cooperation activities. Specifically, this study builds the networks according to the form of Industry-University cooperations(i.e. patent, paper, joint research, and technology transfer), and different types of Industry-University cooperation networks are analyzed from a statistical viewpoint by using QAP correlation and regression analyses. The analysis results show that joint research network is closely related to paper network, and is related to other Industry-University cooperation networks. This study is expected to shed a light on supporting innovation activities such as establishing Industry-University cooperation strategies and discovering cooperative partners necessary for creating new growth engines for universities.

The Performance of Multistage Cooperation in Relay Networks

  • Vardhe, Kanchan;Reynolds, Daryl
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • We analyze the performance of multistage cooperation in decode-and-forward relay networks where the transmission between source and destination takes place in $T{\geq}2$ equal duration and orthogonal time phases with the help of relays. The source transmits only in the first time phase. All relays that can decode the source's transmission forward the source's message to the destination in the second time phase, using a space-time code. During subsequent time phases, the relays that have successfully decoded the source message using information from all previous transmitting relays, transmit the space-time coded symbols for the source's message. The non-decoding relays keep accumulating information and transmit in the later stages when they are able to decode. This process continues for T cooperation phases. We develop and analyze the outage probability of multistage cooperation protocol under orthogonal relaying. Through analytical results, we obtain the near-optimal placement strategy for relays that gives the best performance when compared with most other candidate relay location strategies of interest. For different relay network topologies, we also investigate an interesting tradeoff between an increased SNR and decreased spectral efficiency as the number of cooperation stages is increased. It is also shown that the largest multistage cooperation gain is obtained in the low and moderate SNR regime.

Low-Complexity Energy Efficient Base Station Cooperation Mechanism in LTE Networks

  • Yu, Peng;Feng, Lei;Li, Zifan;Li, Wenjing;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3921-3944
    • /
    • 2015
  • Currently Energy-Saving (ES) methods in cellular networks could be improved, as compensation method for irregular Base Station (BS) deployment is not effective, most regional ES algorithm is complex, and performance decline caused by ES action is not evaluated well. To resolve above issues, a low-complexity energy efficient BS cooperation mechanism for Long Time Evolution (LTE) networks is proposed. The mechanism firstly models the ES optimization problem with coverage, resource, power and Quality of Service (QoS) constraints. To resolve the problem with low complexity, it is decomposed into two sub-problems: BS Mode Determination (BMD) problem and User Association Optimization (UAO) problem. To resolve BMD, regional dynamic multi-stage algorithms with BS cooperation pair taking account of load and geographic topology is analyzed. And then a distributed heuristic algorithm guaranteeing user QoS is adopted to resolve UAO. The mechanism is simulated under four LTE scenarios. Comparing to other algorithms, results show that the mechanism can obtain better energy efficiency with acceptable coverage, throughput, and QoS performance.

The impact of 5G multi-access edge computing cooperation announcement on the telecom operators' firm value

  • Nam, Sangjun
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.588-598
    • /
    • 2022
  • Since multi-access edge computing (MEC) was established as a key enabler of 5G, MEC based on 5G networks (5G MEC) has been perceived as a new business opportunity for many industry players, including telecom operators. Numerous 5G MEC cooperation announcements among companies playing their respective roles in the MEC ecosystem have been recently released. However, because of cooperative and competitive relationships among key players in the MEC ecosystem and the uncertainty of 5G MEC, the announcement of 5G MEC cooperation can negatively affect the telecom operators' firm value. This study investigates the market reaction to announcements of 5G MEC cooperation for telecom operators using an event study methodology. The empirical results show that announcements of 5G MEC cooperation have a negative impact on the telecom operators' firm value. The results also show that the early deployment of 5G networks may reduce the negative impact of 5G MEC cooperation announcements by reducing uncertainty.