• Title/Summary/Keyword: cooling tower system

Search Result 94, Processing Time 0.027 seconds

Study on the Development of Hybrid NMP Recovery System for Recovering the Used NMP in Lithium Ion Battery Cathode Manufacturing Process (리튬이온전지 양극제조 공정에서 사용된 NMP를 회수하기 위한 하이브리드형 NMP 회수시스템 개발에 관한 연구)

  • Hwang, Soon Ho;Nam, Seung Beak;Kim, Dong-Kwon;Kim, Yang Jun;Kang, Sung Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.289-296
    • /
    • 2016
  • The availability of NMP, a solvent used in the manufacturing process of cathode material for lithium ion battery, depends on importation, and the price remains high because of the monopoly of BASF and ISP. For these reasons, most Lithium ion battery manufacturers reuse NMP after recovering it from the exhaust air in the drying process. In Korea, absorption method is mainly used for recovering NMP from the absorption tower using the hydrophilicity of NMP. However, this system has a few disadvantages, such as low purity (80%) of the recovered NMP and 100% emission due to high water content of the treated gas. In this study, we develop a hybrid NMP recovery system by combining cooling condensation method with concentration method, by which it is possible to obtain an NMP recovery rate of 99.6%, and a high purity (96.1%) of the recovered NMP.

Study and Survey of Operating Efficiency with Cool Storage System (빙축열냉방시스템의 운전효율에 관한 조사연구)

  • 손학식;심창호;김강현;김재철
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The purpose of this study is to maintain high efficiency and reasonable use of cool thermal storage systems operated in the domestic building sector. As the result of efficiency test from the five types of operated cool storage systems on the condition that COP ranges are 2.6 to 3.4 during the day time and 2.1 to 3.0 during the night time and it decreased by more than 30% of rated COP given 3.8 to 3.0. The Analysis of cool storage rate shows that only 3 (21.4%) systems out of 15 buildings hold to over 40% capacity for its total capacity. To prevent the decrease in operating efficiency, it should correct the malfunction of 3-way valve and expansion valve and the mistake of control values for schedule program and increase cooling tower capacity. In order to improve piping line, it needs bypass brine line off refrigerator, separation of chilled water line with Ice Slurry system at day and night time and speed control of chilled and warm water pumps. This study does require the more studies on improving difficulty of increasing cooling load with Ice on Coil system, waterproofing with Ice Ball system, COP drop during the night time with Ice Lens, low operating temperature during the day time with Ice Slurry and increasing of Power loss due to hot gas de-icing with Ice Harvest in the future.

Recent Progress in Air Conditioning and Refrigeration Research -A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2000 and 2001- (공기조화, 냉동 분야의 최근 연구 동향 -2000년 및 2001년 학회지 논문에 대한 종합적 고찰 -)

  • 강신형;한화택;조금남;이승복;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1102-1139
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2000 and 2001 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD technologies were widely applied for developing facilities and their systems. (2) Most of papers related with heat transfer analysis and heat exchanger shows dealt with convection, evaporation, and channel flow for the design application of heat exchanger. The numerical heat transfer simulation studies have been peformed and reported to show heat transfer characteristics. Experimental as well as numerical studies on heat exchanger were reported, while not many papers are available for the system analysis including heat exchanger. (3) A review of the recent studies on heat pump system shows that performance analysis and control of heat pump have been peformed by various simulations and experiments. The research papers on multi-type heat pump system increased significantly. The studies on heat pipe have been examined experimently for change of working characteristics and strut lure. Research on the phase change has been carried out steadily and operation strategies of encapsulated ice storage tank are reported experimentally in several papers. (4) A review of recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. Evaporation and condensation heat transfer characteristics are investigated for tube shapes and new alternative refrigerants. Studies on components of refrigeration/air conditioning system are carried to examine efficiency for various compressors and performance of new expansion devices. In addition to thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out, however research works on two-phase flow seemed to be insufficient. (5) A review of the recent studies on absorption cooling system indicates that heat and mass transfer phenomena have been investigated to improve absorber performance. Various experimental data have been presented and several simulation models have been proposed. A review of the recent studies on duct and ventilation shows that ventilation indices have been proposed to quantify the ventilation performance in buildings and tunnels. Main efforts have been focused on the applications of ventilation effectiveness in practice, either numerically using computational fluid dynamics or experimentally using tracer gas techniques. (6) Based on a review of recent studies on indoor thermal environment and building service systems, research issues have mainly focused on many innovative ideas such as underfloor air-conditioning system, personal environmental modules, radiant floor cooling and etc. Also, the new approaches for minimizing energy consumption as well as improving indoor environmental conditions through predictive control of HVAC systems, various activities of building energy management and cost-benefit analysis for economic evaluation were highlighted.

Estimation of Dynamic Load of the Utility in Building by TPA Method (TPA 기법을 이용한 건물 내 설비 동하중 산정)

  • Jeong, Min-Ki;Lee, Seong-Soo;Kim, Yong-Ku;Ahn, Sang-Kyung;Lee, Sang-Yeop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.773-780
    • /
    • 2009
  • The facility equipments generate dynamic force on building floor and the force can be measured with force transducer. However, this method depends on the measuring capacity or range of sensor, or mounts installation condition of equipments. Because of this restricting condition on force measuring system, this paper suggests a indirect method, the TPA(transfer path analysis) method, that produces a closely approximate dynamic force of equipments. This method calculates the dynamic force by using transfer response function. Firstly, the calculated dynamic force of impact load and continuous load was respectively compared with the sensor-measured value to examine the accuracy of TPA method. After that, the dynamic force and response induced by large facility equipments - a cooling tower, AHU and a large ventilator - were calculated by TPA method and the validity of these value were examined.

Inelastic vector finite element analysis of RC shells

  • Min, Chang-Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-148
    • /
    • 1996
  • Vector algorithms and the relative importance of the four basic modules (computation of element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simultaneous equations, and calculation of stresses and strains) of a finite element computer program for inelastic analysis of reinforced concrete shells are presented. Performance of the vector program is compared with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector program is 34 for the element stiffness matrices calculation, 25.3 for the assembly of global stiffness matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on a Gray Y-MP. The overall speedup factor is 30.9. When the equation solver alone is vectorized, which is computationally the most intensive part of a finite element program, a speedup factor of only 1.9 is achieved. When the rest of the program is also vectorized, a large additional speedup factor of 15.9 is attained. Therefore, it is very important that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers. The vector finite element computer program for inelastic analysis of RC shells with layered elements developed in the present study enabled us to perform mesh convergence studies. The vector program can be used for studying the ultimate behavior of RC shells and used as a design tool.

A Study on Heat and Mass Transfer with the Different Flows in a Solar Desiccant Cooling System (태양열제습냉방시스템에서의 유량에 따른 열전달 및 물질전달에 관한 연구)

  • Eflita, Yohana;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.17-24
    • /
    • 2010
  • 태양열 제습냉방은 액체흡수제를 이용한 냉각효과로 기존의 전기에너지를 가능케 하는 해결책중 하나이다. 따라서 태양열을 거의 활용하지 않는 여름에 가열온수를 열원으로 활용하여 쾌적조건을 구현하는 본 연구의 대상인 태양열냉방시스템은 제습기와 재생기로 크게 이루어져 있다. 본 논문은 제습기의 유량 변화에 따른 열전달 및 물질전달의 변화를 실험과 이론적 해석으로 규명하고 있는데, 흐름의 양상은 병렬형과 대향류형을 대상으로 하고 있다. 실험결과와 이론해석이 비교적 잘 일치하였으며, 대향류형이 병렬형보다도 물질전달 면에서 유리하게 나타났으며, 입 출구의 엔탈피 차이에서도 크서 열전달에서도 우수한 것으로 나타났다. 또한 그 차이를 본 논문에서는 나타내었으며, 일정한 높이나 길이 이상에서는 항상 일정함을 알 수 있었다. 따라서 본 논문의 결과들은 제습기의 유동흐름을 통한 태양열냉방시스템 중 제습기의 설계 및 성능 향상에 도움을 줄 것이다.

Fenton난s Reagent Oxidation of Refractory Organics in Petrochemical Plant Effluent (석유화학공장 방류수내 난분해성 유기물의 Fenton 산화처리)

  • Lee, Kyu-Hoon;Jung, Dae-Young;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton's reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton's reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at ranee of 42 ∼ 184 mg/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 mg/L and Fe2+ 100 mg/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton's oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

Reuse of Petroleum Refinery Wastewater Using Reverse Osmosis Membrane (역삼투막을 이용한 정유산업 폐수 재활용 연구)

  • Hwang, Jong-Sic;Sang, Byoung-In;Yoo, Je-Kang;Lee, Kyu-Hyun;Min, Byoung-Ryul;Kim, Byoung-Sik
    • Membrane Journal
    • /
    • v.4 no.4
    • /
    • pp.213-220
    • /
    • 1994
  • Reverse osmosis(R/O) pilot system, which consists of pretreatments and R/O membranes, was demonstrated to regenerate the petroleum refinery wastewater for the process feedwater supply. Despite of the unsteady quality of the wastewater effluent from the process facilities, relatively high salt rejection of 96~99% was obtained and the product water showed a feasible quality for the use of cooling tower feed water. The results of R/O membrane module cleaning with NaOH solution represented that there was some fouling effects on the membrane performance during the period of test due to the ineffective treatment processes proposed and used in this study.

  • PDF

Applicability Assessment of Acid Treated Red Mud as Adsorbent Material for Removal of Six-valent Chromium from Seawater (해수에서 6가 크롬 제거를 위한 흡착제로서의 산처리 적니 적용성 검토)

  • Kang, Ku;Um, Byung-Hwan;Kim, Young-Kee;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.17-23
    • /
    • 2013
  • Six-valent chromium ($Cr^{6+}$) is a highly toxic pollutant, supplied in a variety of industrial activities such as leather tanning, cooling tower blowdown, and plating. Herein, we investigated the removal of $Cr^{6+}$ from aqueous phase using low-cost adsorbents. Steel slag, montmorillonite, illite, kaolinite, red mud, and acid treated red mud with 0.5, 1.0, and 2.0 M HCl were used as adsorbent for the removal of $Cr^{6+}$ and the results showed that acid treated red mud with 2.0 M HCl (ATRM-2.0 M) had higher adsorption capacity of $Cr^{6+}$ than other adsorbents used. Accordingly, $Cr^{6+}$ removal by ATRM-2.0 M were studied in a batch system with respect to changes in initial concentration of $Cr^{6+}$, initial solution pH, adsorbent dose, adsorbent mixture, and seawater. Equilibrium sorption data were described well by Freundlich isotherm model. The influence of initial solution pH on $Cr^{6+}$ adsorption was insignificant. The use of the ATRM-2.0 M alone was more effective than mixing it with other adsorbents including red mud, zeolite, oyster shell, lime stone, and montmorillonite for the removal of $Cr^{6+}$. The $Cr^{6+}$ removal of the ATRM-2.0 M was slightly less in seawater than deionized water, resulting from the presence of anions in seawater competing for the favorable adsorption site on the surface of ATRM-2.0 M. It was concluded that the ATRM-2.0 M can be used as a potential adsorbent for the removal of $Cr^{6+}$ from the aqueous solutions.