• Title/Summary/Keyword: cooling power load

Search Result 235, Processing Time 0.032 seconds

The characteristics of capacity control using a variable speed compressor in an industrial cooler (산업용 냉각기의 압축기 회전수 변화에 따른 용량제어 특성)

  • Baek, S.M.;Moon, C.G.;Yoon, J.I.;Jeong, S.K.;Kim, E.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents the capacity-control characteristics in an industrial cooler with a variable speed compressor. The inverter-type compressor is controlled by the rotational speed of the operational frequency. This type of the compressor performs the wide range of load compared to the on-off type. When the load of the system reduces, the rotational speed will be reduced. Thus, the system leads to the less power consumption and extends the longer durability of the compressor. With the variable rotational speed of the compressor the cooling capacity of the cooler is about 1.6-3.6 kW and the capacity control is about 40-100%. The system showed the highest efficiency when the rotational speed is about 45-70 Hz. The results can be used as the basic design data to control an industrial cooler.

Cooling Performance Analysis of Ground-Source Heat Pump (GSHP) System with Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 2018
  • This paper presents the cooling performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a vertical GHE and a surface water heat exchanger (SWHE). In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the hybrid GHE, Mode 1~Mode 4. The measurement results show that the system with HGHE mainly operates in Mode 1 and Mode 2 over the entire measurement period. The average cooling coefficient of performance (COP) for heat pump unit was 5.18, while the system was 2.79. In steady state, the heat pump COP was slightly decreased with an increase of entering source temperature. In addition, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further research are needed to optimize the design data for various load ratios of the HGHE.

Ice slurry transporting and branching characteristics for the district cooling (지역냉방을 위한 아이스슬러리 시스템의 수송 및 분기 특성)

  • Lee, Sang-Hoon;Yoo, Ho-Seon;Lee, Yoon-Pyo;Lee, Chang-Jun;Kwon, Hyeok-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.662-667
    • /
    • 2009
  • The research are performed to check the characteristics of the ice slurry transport system for the district cooling. The system are installed at the 1st floored building which is as large as the $1204\;m^2$ ($86\;m{\times}14\;m$), and the pumping power and branching characteristics are measured by transporting of the ice slurry. The ice slurry transporting pipe is as long as 200 m. For the same cooling load, the higher IPF is, the lower the transporting flow rate and the pumping power are. But when the IPF is higher than 15%, no less decrease of the pumping power does happen. For the branching characteristics, through the branch pipe where the flow resistance is higher, the higher IPF is measured. A little higher IPF is measured at the thermal expansion branch.

  • PDF

Experimental research on design wind loads of a large air-cooling structure

  • Yazhou, Xu;Qianqian, Ren;Guoliang, Bai;Hongxing, Li
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • Because of the particularity and complexity of direct air-cooling structures (ACS), wind parameters given in the general load codes are not suitable for the wind-resistant design. In order to investigate the wind loads of ACS, two 1/150 scaled three-span models were designed and fabricated, corresponding to a rigid model and an aero-elastic model, and wind tunnel tests were then carried out. The model used for testing the wind pressure distribution of the ACS was defined as the rigid model in this paper, and the stiffness of which was higher than that of the aero-elastic model. By testing the rigid model, the wind pressure distribution of the ACS model was studied, the shape coefficients of "A" shaped frame and windbreak walls, and the gust factor of the windbreak walls were determined. Through testing the aero-elastic model, the wind-induced dynamic responses of the ACS model was studied, and the wind vibration coefficients of ACS were determined based on the experimental displacement responses. The factors including wind direction angle and rotation of fan were taken into account in this test. The results indicated that the influence of running fans could be ignored in the structural design of ACS, and the wind direction angle had a certain effect on the parameters. Moreover, the shielding effect of windbreak walls induced that wind loads of the "A" shaped frame were all suction. Subsequently, based on the design formula of wind loads in accordance with the Chinese load code, the corresponding parameters were presented as a reference for wind-resistant design and wind load calculation of air-cooling structures.

A Study on the Development of the Large Building Air-conditioning System with the Regenerative Ice-energy and its Computer Aided Design (빙축열을 이용한 대형빌딩 공기조화시스템 개발과 설계전산화에 관한 연구)

  • 권형정;김원영;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.5
    • /
    • pp.38-46
    • /
    • 1991
  • In the design of an electric power plant, the capacity to meet the peak load demand is one of the important factors to be considered. This peak load usually occurs when the most of the cooling air-conditioning systems are being operated during daytime in summer season. Therefore, it is necessary to construct an additional electric power plant and to develop the new air-conditioning system for relieving the peak load. This paper analysed the performance characteristics of this experimental regenerative ice energy system by means of a bundle of the heat-pipes. And the result of this analysis was applied to the simulation of an air-conditioning system model. Also, an operation program of moisture air was made according to air load and in order to computerize the air-conditioning system a CAD program was developed by the properties of moisture air.

  • PDF

A Study on the Yearly Thermal Environmental Characteristics in Underground Space (지하거주공간의 연간 열환경에 관한 연구)

  • Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.27-33
    • /
    • 1998
  • The room temperature and air conditioning load in the underground space have been investigated numerically by the unsteady heat conduction equation. The model room has 3 m in height and 10 m in width, and it's position in the underground depth are 0.5 m to 5 m. When the room was located around surface, the room temperatures were strongly influenced by the atmosphere. But the underground depth is more than 2 m, the yearly temperature amplitude was small and the temperature phase was delayed. Up to 5 m of the depth, the cooling and heating load was decreased rapidly, but over 10 m of the depth, the air conditioning load was constant.

  • PDF

A Study on the Characteristics of HTS Cable System Operation and Cooling Load in a Load Unbalance (불평형 부하에서의 초전도케이블 운전 및 냉각부하 특성에 관한 연구)

  • Sohn, S.H.;Lim, J.H.;Yang, H.S.;Choi, H.O.;Ma, Y.H.;Kim, D.L.;Ryoo, H.S.;Ryu, K.W.;Hwang, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.397_398
    • /
    • 2009
  • Demonstrations to deploy high temperature superconducting (HTS) cable to the real gird are actively carried out throughout the world. Power utilities have an interest in the inherent advantage of the HTS cable system, and achieve the expected results from the series of verification test. To embody the reliability in the phenomenon occurred commonly in three-phase system, we simulate the load unbalance. A 22.9 kV large scale HTS cable system with the specification of 100 m-long, 50 MVA capacity has been tested with up to 30% unbalance rate. To evaluate the effect of AC loss increase due to the unbalanced load, the cooling loads are measured by the calorimetry method. In this paper, the correlation between AC loss and load unbalance is described and investigated precisely.

  • PDF

Cooling Performance of Cooling Tower-Assisted Ground-Coupled Heat Pump (GCHP) System Applied in Hospital Building (병원 건물에 설치된 냉각탑 병용 지열 히트펌프 시스템의 냉방 성능)

  • Sohn, Byonghu;Lee, Doo-Young;Min, Kyung-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • This paper presents the measurement and analysis results for the cooling performance of ground-coupled heat pump (GCHP) system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from May 1 to October 30, 2014. The results showed that the entering source temperature of brine returning from the ground heat exchanger was in a range of design target temperature. Leaving load temperatures to building showed an average value of $11.4^{\circ}C$ for cooling season. From the analysis, the daily performance factor (PF) of geothermal heat pumps ranged from 4.4 to 5.2, while the daily PF of hybrid GCHP system varied from 3.0 to 4.0 over the entire cooling season.

Experimental Study on Cooling Characteristics of Multi - Air Conditioner using Inverter Scroll Compressor (인버터 스크롤 압축기를 사용한 멀티 에어컨의 냉방 특성에 대한 실험적 연구)

  • 권영철;고국원;진의선;허삼행;전용호;이영덕;박인규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.311-317
    • /
    • 2004
  • In the present study, the cooling characteristics of the multi-air conditioner (A/C) using an inverter scroll compressor are experimentally investigated for the number of the indoor units and the operating conditions (2$0^{\circ}C$, 24$^{\circ}C$, 26$^{\circ}C$) under the cooling standard conditions by KS C 9306. In the case of the simultaneous operation for 3 indoor units, the cooling capacity, the mass flow rate and the input power have a decreasing trend and COP has an increasing trend, with decreasing the difference in the operating temperature of the indoor unit and the room temperature. In the case of the simultaneous operation for 2 indoor units, the COP of the indoor unit with large cooling capacity is high when the operating temperature is high, but the COP of the indoor unit with low cooling capacity is high when the operating temperature is low. In the case of the single operation for one unit, when the large cooling capacity of the indoor unit is less than 50% the compressor operates at the minimum operation frequency region and the COP decreases.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.