• 제목/요약/키워드: cooling phase

검색결과 843건 처리시간 0.023초

REBa2Cu3O7-x (RE=Nd, Gd, Dy) 초전도체의 열처리에 따른 상변태와 미세구조 (Phase Transformation and Misconstruct of REBa2Cu3O7-x (RE=Nd, Gd, Dy) Superconductor during Heat treatment)

  • 오용택;한용희;한병성;한상철;성태현;홍광준;신동찬
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1278-1285
    • /
    • 2003
  • This study investigated the phase transformation of the REBa$_2$Cu$_3$$O_{7-x}$ (RE=Nd, Gd, Dy) superconductor, and CCT (Continuous-Cooling-Transformation) along with the TTT (Time-Temperature-Transformation) diagrams are suggested according to the isothermal and continuous cooling heat-treatments. The peritectic temperature of the 123 phases decreased approximately 3$0^{\circ}C$ when the ionic radius of the rare-earth elements was reduced. The optimum cooling rate where BC and Cu-free phases do not exist was 0.001$^{\circ}C$/s. At this cooling late, the 123 phase grew with a c-axis Perpendicular to the surface and had a well-distributed 211 phase. When the oxygen partial pressure was reduced Outing isothermal heat-treatment, the formation temperature of the 211 phase decreased. In addition, the formation temperature of the 123 phases decreased from 100$0^{\circ}C$ (Nd-123) to 9$25^{\circ}C$ (Gd-123), and finally 875$^{\circ}C$ (Dy-123) according to the decrease in the ionic radius of the tare-earth elements. Compared to Nd-123, Gd- and Dy-123 had a better texture with a well-distributed 211 phase.e.

용접 열영향부 미세조직 및 재질 예측 모델링: V. 저합금강의 초기 오스테나이트 결정립크기 및 냉각 속도의 영향을 고려한 용접 열영향부 상변태 모델 (Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: V. Prediction Model for the Phase Transformation Considering the Influence of Prior Austenite Grain Size and Cooling Rate in Weld HAZ of Low Alloyed Steel)

  • 김상훈;문준오;이윤기;정홍철;이창희
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.104-113
    • /
    • 2010
  • In this study, to predict the microstructure in weld HAZ of low alloyed steel, prediction model for the phase transformation considering the influence of prior austenite grain size and cooling rate was developed. For this study, six low alloyed steels were designed and the effect of alloying elements was also investigated. In order to develop the prediction model for ferrite transformation, isothermal ferrite transformation behaviors were analyzed by dilatometer system and 'Avrami equation' which was modified to consider the effect of prior austenite grain size. After that, model for ferrite phase transformation during continuous cooling was proposed based on the isothermal ferrite transformation model through applying the 'Additivity rule'. Also, start temperatures of ferrite transformation were predicted by $A_{r3}$ considering the cooling rate. CCT diagram was calculated through this model, these results were in good agreement with the experimental results. After ferrite transformation, bainite transformation was predicted using Esaka model which corresponded most closely to the experimental results among various models. The start temperatures of bainite transformation were determined using K. J. Lee model. Phase fraction of martensite was obtained according to phase fractions of ferrite and bainite.

핫 프레스 벤딩 공정에서 냉각회로 최적화를 위한 공정변수의 평가 (Evaluation of Design Parameters for Optimizing the Cooling Channel in Hot Press Bending Process)

  • 남기주;최홍석;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1267-1273
    • /
    • 2009
  • Hot press forming can produce high-strength components by rapidly cooling between closed punch and die after hot forming using quenchable boron steel austenized in a furnace. In the hot press forming process, the cooling rate is influenced by the size, position and arrangement of the cooling channel and the file condition of cooling water in the die. Also, mechanical properties of the final components and operation time are related to cooling rate. Therefore, the design of optimized cooling channel is one of the most important works. In this paper, the effect of position and size of the cooling channel on the cooling rate was investigated by using design of experiment and FE analysis in hot press bending process. Therefore the optimum cooling channel ratio was presented in the HPB.

Preparation of PVDF Membrane by Thermally-Induced Phase Separation

  • Heo, Chi-Haeng;Lee, Kyung-Mo;Kim, Jin-Ho;Kim, Sung-Soo
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.27-33
    • /
    • 2007
  • PVDF membrane formation via TIPS was performed for PVDF/DBP and PVDF/DMP systems. PVDF/DBP system showed solid-liquid phase separation behavior, while PVDF/DMP system has liquid-liquid phase separation characteristic as well as solid-liquid phase separation characteristic. PVDF contents and cooling conditions had great influence on structure, and the effects of each parameter were examined. Spherulitic structure was obtained due to the dominant PVDF crystallization. Diluent rejected to the outside of spherulite occupied the surface of the PVDF spherulites to result in the microporous spherulite formation and micro-void between spherulites. PVDF/DMP system had competitive solid-liquid and liquid-liquid phase separation depending on the cooling path.

내마모 CV흑연주철의 공정인화물 형성에 미치는 합금원소 및 냉각속도의 영향 (The Effects of Alloying Elements and Cooling Rates on the Formation of Phosphide Eutectics of Wear Resistance CV Graphite Cast Irons)

  • 박흥일;김명호
    • 한국주조공학회지
    • /
    • 제9권4호
    • /
    • pp.311-319
    • /
    • 1989
  • The effects of the alloying elements and cooling rates on the formation of phosphide eutectics of compacted vermicular graphite cast irons containing copper, tin, molybdenum for producing pearlitic matrix, and also containing phosphorus and boron for increasing wear resistance, were investigated. The liquidus phosphide eutectic was found to solidify as a pseudo-binary phosphide eutectic, but with increasing of the cooling rate non-equlibrium phosphide eutectic with needle type carbide could be formed. However, the liquidus phosphide eutectic containing both phosphorus and carbide-forming boron was found to solidify always as a non-equlibrium phosphide eutectic with coarse carbide, independent from the cooling rate. It was also confirmed that the tiny isolated phase observed by SEM was gamma iron solid solution with phosphorus, silicon, molybdenum and the matrix containing these tiny islands was phosphide phase containing manganese and molybdenum. The addition of copper was found to decrease the tendency of forming ledeburitic carbides in the phosphide eutectic.

  • PDF

고발열 CPU 냉각용 증기 압축식 냉각 시스템의 증발기 최적화 (Optimization of Evaporator for a Vapor Compression Cooling System for High Heat Flux CPU)

  • 김선창;전동순;김영률
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.255-265
    • /
    • 2008
  • This paper presents the optimization process of evaporator for a vapor compression cooling system for high heat flux CPU. The CPU thermal capacity was given by 300W. Evaporating temperature and mass flow rate were $18^{\circ}C$ and 0.00182kg/s respectively. R134a was used as a working fluid. Channel width(CW) and height(CH) were selected as design factors. And thermal resistance, surface temperature of CPU, degree of superheat, and pressure drop were taken as objective responses. Fractional factorial DOE was used in screening phase and RSM(Response Surface Method) was used in optimization phase. As a result, CW of 2.5mm, CH of 2.5mm, and CL of 484mm were taken as an optimum geometry. Surface temperature of CPU and thermal resistance were $33^{\circ}C\;and\;0.0502^{\circ}C/W$ respectively. Thermal resistance of evaporator designed in this study was significantly lower than that of other cooling systems such as water cooling system and thermosyphon system. It was found that the evaporator considered in this work can be a excellent candidate for a high heat flux CPU cooling system.

선상가열시 수냉이 유발하는 막비등 현상을 고려한 판의 변형 예측 (Prediction of Plate Deformation Considering Film Boiling in Water Cooling Process after Line Heating)

  • 하윤석;김정수;장창두
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.472-478
    • /
    • 2005
  • From a rapid cooling to a slow cooling in the actual cooling process in shipyards, the phase of steel becomes martensite, bainite, ferrite, and pearlite. In order to simulate the cooling process, heat transfer analysis was performed considering the effects of impinging water jet, film boiling, and radiation. From above simulation it is possible to find the cooling speed at the inherent strain region and volume percentage of all phases in that region. By the suggested method based on the precise material properties calculated from volume percentage of all phases, it will be possible to predict the plate deformations by line heating more precisely. It is verified by comparing with some experimental results that the present method is very effective and efficient.

Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석 (Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets)

  • 이재원;김성진
    • Corrosion Science and Technology
    • /
    • 제21권3호
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

고강도 냉간압조용 중탄소 Cr-Mo 합금강의 임계간 어닐링시 냉각속도 및 온도의 영향 (Effect of Cooling Rate and Temperature on Intercritical Annealing of Medium-Carbon Cr-Mo Alloy for High Strength Cold Heading Quality Wire Rod)

  • 이종혁;장병록
    • 열처리공학회지
    • /
    • 제36권4호
    • /
    • pp.230-236
    • /
    • 2023
  • The current study deals with the effect of cooling rate and temperature for annealing on medium-carbon Cr-Mo alloy steel, especially for cold heading quality wire rod, to derive the optimum micro-structures for plastic deformation. This is to optimize the spheroidization heat treatment conditions for softening the material. Heat treatment was performed under seven different conditions at a temperature between Ac1 and Ac3, mostly within 720℃ to 760℃, and the main variables at this time were temperature, retention time and cooling rate. Microstructure and phase changes were observed for each test condition, and it was confirmed that they were greatly affected by the cooling rate. It was also confirmed that the cooling rate was changed in the range of 0.1℃/min to 5℃/min and affected by phase deformation and spheroidization fraction. The larger the spheroidization fraction, the lower the hardness, which is associated with the increasing connection of ferrite phases.

수냉 효과를 고려한 선상가열에 의한 판 변형의 시뮬레이션 (Simulation of plate deformation due to line heating considering water cooling effects)

  • 고대은;하윤석
    • 한국산학기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.2470-2476
    • /
    • 2011
  • 실험적인 방법과 수치적인 방법의 장점을 취한 고유변형도법은 선상가열에 의한 판의 변형을 예측하는데 매우 유용하다. 고유변형도법을 이용한 선상가열에 의한 판 변형의 예측을 위해서는 고유변형도의 크기와 영역을 적절하게 결정하는 것이 중요한데, 선상가열 후의 실제 냉각속도에 따라 강의 상변태 특성이 달라지므로 이 또한 고유변형도 결정에 있어서 고려되어야 한다. 조선 현장에서 많이 사용되는 수냉과정을 모사하기 위해 충돌제트, 막비등, 복사 효과를 포함하는 열전달 해석법을 제안하였으며, 이를 통해 고유변형도 영역의 실제 냉각속도와 상변태 분율을 구할 수 있다. 상변태 분율에 따른 재료의 물성치를 반영함으로써 선상가열에 의한 판의 변형을 보다 정도 있게 예측하는 것이 가능하다.