• Title/Summary/Keyword: cooling fracture

Search Result 117, Processing Time 0.027 seconds

AN OBSERVATION ON THE FRACTURE SYSTEMS OF THE SOUTHERN VIETNAM

  • Chang Sung Jin;Long Nguyen Tien
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.6-22
    • /
    • 2001
  • A study of the fracture systems in outcrops of southern onshore Vietnam revealed two kinds of fracture groups according to their origin: cooling fractures and deformation related fractures. Cooling of magma introduced extensive fractures in the batholiths with wide spacing and narrow aperture. They are found widespread in all magmatic bodies, but result in poor reservoir quality due to low bulk porosity and narrow aperture. Cooling fractures are often reactivated during later stress regimes. Deformation related fractures, especially 'fault damage zones' and 'hanging wall deformation' is thought to form the most important reservoir type in the fractured basement rock. The porosity formed by intense fracturing and fault breccia along minor fault zones is thought to be the producing zones in the producing fields of Cuu Long basin. They are found along major faults and widespread in hanging wall blocks.

  • PDF

A Study on Thermomechanical Analysis of Laser Ablation on Cr thin film (크롬박막의 레이저 어블레이션에서 열적.기계적 해석에 관한 연구)

  • 윤경구;장원석;이성국;김재구;나석주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.914-917
    • /
    • 2001
  • Single-shot laser damage of thin Cr films on glass substrates has been studied to understand the cracking and peeling-off mechanism. A numerical model is developed for the calculation of transient heat transfer and thermal stresses in Cr films during excimer laser irradiation and cooling, the transient temperature, and the stress-strain fields are analyzed by using a three-dimensional finite-element model of heat flow. According to the numerical analysis for the experimentally determined cracking and peeling-off conditions, cracking is found to be the result of the tensile brittle fracture due to the excessive thermal stresses formed during the cooling process, while peeling-off is found to be the combined result of films bulging from the softened glass surface at higher temperature and the tensile brittle fracture during the cooling process.

  • PDF

Fracture toughness of high performance concrete subjected to elevated temperatures Part 2 The effects of heating rate, exposure time and cooling rate

  • Zhang, Binsheng;Cullen, Martin;Kilpatrick, Tony
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.513-537
    • /
    • 2017
  • In this study, the fracture toughness $K_{IC}$ of high performance concrete (HPC) was investigated by conducting three-point bending tests on a total of 240 notched beams of $500mm{\times}100mm{\times}100mm$ subjected to heating temperatures up to $450^{\circ}C$ with exposure times up to 16 hours and various heating and cooling rates. For a heating rate of $3^{\circ}C/min$, $K_{IC}$ for the hot concrete sustained a monotonic decrease trend with the increasing heating temperature and exposure time, from $1.389MN/m^{1.5}$ at room temperature to $0.942MN/m^{1.5}$ at $450^{\circ}C$ for 4-hour exposure time, $0.906MN/m^{1.5}$ for 8-hour exposure time and $0.866MN/m^{1.5}$ for 16-hour exposure time. For the cold concrete, $K_{IC}$ sustained a two-stage decrease trend, dropping slowly with the heating temperature up to $150^{\circ}C$ and then rapidly down to $0.869MN/m^{1.5}$ at $450^{\circ}C$ for 4-hour exposure time, $0.812MN/m^{1.5}$ for 8-hour exposure time and $0.771MN/m^{1.5}$ for 16-hour exposure time. In general, the $K_{IC}$ values for the hot concrete up to $200^{\circ}C$ were larger than those for the cold concrete, and an inverse trend was observed thereafter. The increase in heating rate slightly decreased $K_{IC}$, and at $450^{\circ}C$ $K_{IC}$ decreased from $0.893MN/m^{1.5}$ for $1^{\circ}C/min$ to $0.839MN/m^{1.5}$ for $10^{\circ}C/min$ for the hot concrete and from $0.792MN/m^{1.5}$ for $1^{\circ}C/min$ to $0.743MN/m^{1.5}$ for $10^{\circ}C/min$ for the cold concrete after an exposure time of 16 hours. The increase in cooling rate also slightly decreased $K_{IC}$, and at $450^{\circ}C$ $K_{IC}$ decreased from $0.771MN/m^{1.5}$ for slow cooling to $0.739MN/m^{1.5}$ for fast cooling after an exposure time of 16 hours. The fracture energy-based fracture toughness $K_{IC}$' was also assessed, and similar decrease trends with the heating temperature and exposure time existed for both hot and cold concretes. The relationships of two fracture toughness parameters with the weight loss and the modulus of rapture were also evaluated.

Controlled Cooling Technical of High Tensile Valve Spring Wire Rod (고강도 엔진밸브 스프링강 선재 저온조직 발생방지 선재압연 기술)

  • 김경원;장용권;임규환;서일권
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.172-179
    • /
    • 1999
  • As the martensite structure cause fracture failure during drawing from 5.5mm rod to 3.05mm dia. wire without additional heat treatment, the optium cooling condition to inhibit the occurrence of martensite was investigated. In order to get SAE9254+V quality, the effects of alloying element, vanadium on the mechanical properties were investigated. Based upon CCT and TTT curves and the results form cooling test in mill, optimun cooling was found in the condition of the laying head temp of 780$^{\circ}C$ and of the conveyor speed at 0.15m/sec with the whole cover closed. The wire rods produced under the condition showed the best mechanical properties of 120kg/$\textrm{mm}^2$ in TS and 50% in RA, having an excellent drawability. In vanadium added steels, tensile strength was improved without degrading elongation and charpy impact value. That means the strengthening by vanadium is mainly due to the grain refinement by the fine precipitates during tempering process.

  • PDF

A Study on Thermal Shock Characteristics of Functionally Gradient Ceramic/Metal Composites (경사기능성 세라믹/ 금속 복합재료의 열충격특성에 관한 연구)

  • Song, Jun-Hee;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2134-2140
    • /
    • 1996
  • This study was carried out to anlayze the heat-resistant characteristics of functionally gradient material(FGM) composed with ceramic and metal. The thermal fracture behavior of plasma-sprayed FGM and conventional coating material(NFGM) was exaimined by acoustic emession technique under heating and cooling. Furnace cooling and rapid cooling tests were used to examine the effect of temperature change under various conditions, respectively. At the high temperature above $800^{\circ}C$, it was shown that FGM gives higher thermal resistance compared to NFGM by AE signal and fracture surface analysis.

Effect of Cooling Rate on Mechanical Properties of Carbon/Nylon66 Composites (카본/나일론 복합재료의 냉각속도에 따른 기계적 특성변화)

  • 홍순곤;변준형;황병선;강범수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.122-125
    • /
    • 2001
  • The objective of this research is to develop hybridized yarns for thermoplastic composites, and to examine tile effect of cooling rate on mechanical properties of the composites. The co-braided yarn utilizing carbon fibers as reinforcements and Nylon 66 fibers as matrix materials has been fabricated. Thermoplastic composites have been manufactured by the hot-press forming process. For the processing conditions, cooling rates of $-2.5^{\circ}C$/min and $-60^{\circ}C$/min have been considered. Three-point bending test and losipescu shear test were performed to investigate the effect of the cooling rate and the surface treatment of carbon fibers. SEM photographs were used to investigate the fracture surfaces of the tested samples. The cooling rate of $-60^{\circ}C$/min resulted in the higher strength and elastic modulus for bending and shear tests. The composites of the epoxy-sized carbon fibers showed the lowest strength due to the degradation of the sizing material during the thermoforming process.

  • PDF

The Cause Analysis on Fracture of Diesel Locomotive Engine Liner (디젤동차용 엔진 라이너 파손 원인에 관한 연구)

  • Kwon Sung-Tae;Kim Jung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.674-679
    • /
    • 2004
  • In this study, we investigated the cause analysis on fracture of diesel locomotive engine liner, which was trouble assuming the inflow of cooling water. In order to reveal the cause of fracture, we studied the use history of engine, the drawing of production appearance and the stress distribution of engine in use. Also, we conducted experiments such as tension strength test, bending test and hardness test. Next, we observed fractured sections by SEM for the purposed of explaining the fracture mechanism of engine liner. Test results showed that fracture mechanism was brittle fracture due to coarse casting structure and stress concentration caused by manufacturing badness.

  • PDF

Optimized Brazing Conditions of Regenerative Cooling Thrust Chambers (재생 냉각용 연소기의 최적 브레이징 조건)

  • Nam,Dae-Geun;Hong,Seok-Ho;Han,Gyu-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.112-117
    • /
    • 2003
  • The brazing of copper alloys and duplex stainless steels is an indispensable manufacturing technology for thrust chambers with regenerative cooling. For setting up the optimized brazing conditions, C18200 copper alloy plate with machined cooling channels and S31803 stainless steel plate are brazed with AMS4764 filler metals of which thickness is 50${\mu}m$ and 80${\mu}m$ They are tested by X-ray radiography, strength/leakage and fracture tests, and fracture surface inspection. The results obtained by the suggested conditions are that the specimen brazed with filler metal thickness of 50${\mu}m$ has good strength properties and brazed zone. However, the specimen with filler metal thickness of 80${\mu}m$ has the brazed zone with cooling channel obstruction and enlargement.

Effect of Cooling Rate on Thermal Shock Behavior of Alumina Ceramics ($Al_2O_3$ 세라믹스 열충격에 미치는 냉각 조건의 영향)

  • 한봉석;이홍림;전명철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.767-773
    • /
    • 1997
  • Thermal shock behavior of alumina ceramics were studied by quenching the heated alumina specimen into the water of various temperatures over 0~10$0^{\circ}C$. The critical thermal shock temperature difference ( Tc) of the specimen decreased almost linearly from 275$^{\circ}C$ to 20$0^{\circ}C$ with increase in the cooling water temperature over 0~6$0^{\circ}C$. It is probably due to the increase of the maximum cooling rate which is dependent of the convection heat transfer coefficient. The convection heat transfer coefficient is a function of the temperature of the cooling water. However, the critical thermal shock temperature difference( Tc) of the specimen increased at 25$0^{\circ}C$ over 80~10$0^{\circ}C$ due to the film boiling of the cooling water. The maximum cooling rate, which brings about the maximum thermal stress of the specimen in the cooling process, was observed to increase linearly with the increase in the quenching temperature difference of the specimen due to the linear relationship of the convection heat transfer coefficient with the water temperature over 0~6$0^{\circ}C$. The critical maximum cooling rate for thermal shock fracture was observed almost constant to be about 260$\pm$1$0^{\circ}C$/s for all water temperatures over 0~6$0^{\circ}C$. Therefore, thermal shock behavior of alumina ceramics is greatly influenced by the convection heat transfer coefficient of the cooling water.

  • PDF

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF