• Title/Summary/Keyword: cooling fan

Search Result 437, Processing Time 0.024 seconds

Fan Performance optimization with DOE (실험 계획법을 이용한 노트북용 Fanblock 의 소음 성능 최적화)

  • Sun, You-Myoung;Ku, Jung-Ho;Kim, Ye-Yong;Lee, Hyuk-Ki;Lee, Sung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.594-597
    • /
    • 2007
  • The notebook system use the radial fan to cool the main chipsets which generate heat. It needs to improve cooling performance by increasing fan RPM or increasing fan volume. But the former accompanies acoustic noise problem and the latter has a limitation due to notebook height and cooling area. So this study shows fatal parameters in the fan performance view point, and optimization process with Design Of Experiment. With this result, the fan CFM increases with same size of fan and we can use it as a result of decreasing fan acoustic noise.

  • PDF

A Development of the Vibration Absorber and Damper for Vibration and Noise Reduction of the Computer (PC의 진동/소음 저감을 위한 쿨링팬의 동흡진장치 및 절연장치의 개발)

  • Chung, Jin-Tai;Jung, Won-Young;Lee, Kyu-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.370-375
    • /
    • 2009
  • The purpose of this study is to reduce the vibration of the computer by developing the vibration absorber and damper. The eccentricity of the cooling fan causes the vibration of the computer. We designed the material properties of the vibration absorber by FEM model within operation frequencies of the cooling fan. We experiment the overall analysis and system analysis. The vibration of cooling fan is measured by using a laser vibrometer. The result shows that the proposed vibration absorber and damper reduce the vibration of the computer.

  • PDF

Aerodynamic Noise Prediction of Automobile Engine Cooling Fan Noise (자동차 엔진 냉각홴의 공력 소음 예측에 관한 연구)

  • Lee, Jeonghan;Cho, Kyungseok;Sun, Hyosung;Shin, Hyungki;Lee, Soogab
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.115-120
    • /
    • 1998
  • Aerodynamic noise generated by automobile cooling fan is investigated. Automobile cooling fans radiate both discrete frequency noise as well as broadband noise. In the present work, the former is considered through free-wake panel method coupled with acoustic analogy fully considering the retarded time variation on the blade surface, while the latter is taken into account by three well-established broadband noise components. Experiments were performed to supplement necessary inputs as well as to provide the final comparison with the predicted noise spectrum. The predicted noise levels at blade passing frequencies agree well with the experimental data for the first few harmonics. Although the predicted broadband noise levels at higher frequencies fall below the experimental data due to the fundamental shortcomings of the utilized formulations, the analysis offers a detailed physical understanding of the fan noise generation processes.

  • PDF

A Study on efficiency improvement of BLDC motor for radiator cooling fan (자동차 Cooling Fan용 고효율 BLDC모터의 호율개선에 대한 연구)

  • Ahn, Young-Il;Park, Chang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.44-46
    • /
    • 2003
  • Nowaday it is trend to be one cooling radiator and cooling fan from separate engine radiator and air condition radiator in cars. For the cooling fan is developed a electrical motor which is limited in size. The motor should be working in silence and have no electromagnetic Problem and high efficiency. In this paper will be proposed some parameters for improvement of the efficiency of a BLDC motor which is developed for the cooling system after theoretical and experimental investigation.

  • PDF

Experimental Study on the Thermal Performance of Piezoelectric Fan in an Enclosure (밀폐공간 내에서 압전세라믹 냉각홴의 열성능에 대한 실험적 연구)

  • Park, Sang-Hee;Choi, Moon-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1173-1180
    • /
    • 2006
  • This study deals with fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) fan in an enclosure. The fluid flows were generated by a flexible PZT fan which deflects inside a fluid transport system of comparatively simple structure mounted on a PCB in an enclosure($270\times260\times90mm^3$). Input voltages of 30V and 40V, and a resonance frequency of 28Hz were used to vibrate the cooling fan. Input power to the module was 4W. The height in an enclosure was changed 23$\sim$43mm. The fluid flow around the module was visualized by using PIV system. The temperature distributions around a heated module were visualized by using liquid crystal film. As the height in an enclosure and the input voltage of PZT fan increased, the cooling effect of module using a PZT fan increased. We found that the flow type was T- or Y-shape and the cooling effect was increased by the wake generated by a PZT fan.

A Study on Performance Enhancement of AHU with a Pressure Type Fan (압입식 송풍방식을 적용한 AHU의 성능 향상을 위한 연구)

  • Jang, H.S.;Kim, E.P.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1164-1169
    • /
    • 2008
  • The miniaturization of the Air Handling Unit (AHU) has become an actual need because of the restriction of the using space on the vessel. In modern AHU’s construction, in which the fan section is at the end part of the ship, it’s very difficult to select a suitable capacity of evaporators, because the fan motor emits heat. Thus, the AHU structure has been changed as the fan section has been set before the cooling coil to get temperature values similar to the designed amount. Also, the air guider is installed in order to maintain equal air distribution after it passed the fan section. So, it is possible for air to equally pass the cooling coil. It is investigated three different geometries to find the best performance. Also, It is compared with the numerical and experimental results. The study found the case 3 gives the best results. The results of this study show the possible application of the new design.

The Study Of Sequence Control for LED (LED 조명 발열의 순차 제어시스템 연구)

  • Choi, Hyeung-Sik;Yoon, Jong-Su;Shin, Hee-Young;Lim, Tae-Woo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.99-100
    • /
    • 2011
  • In this paper, a temperature control for LED(Light Emitting Diode) lamp using a cooling fan is studied. An efficient temperature control scheme for the LED lamp using the fan wind at the lowest sound noise is studied. Also, for minimization study of sound noise and temperature control of an LED lamp, a sequential control algorithm using the cooling fan at the lowest sound noise is presented. For the study, after measurement of the minimum sound noise of the fan and related temperature of the LED lamp through tests, experiments on temperature control of the LED lamp using the fan was performed.

  • PDF

A Study on the Noise Characteristics of Cooling Tower (냉각탑의 방사소음특성에 관한 연구)

  • Park, B.Y.;Kim, I.S.;Lee, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.361-374
    • /
    • 1996
  • In general, a cooling tower has two major noise sources, one is the fan and the other is the falling water. The fan noise is produced by passage of its blades through the air and radiates from the fan stack. Noises from the falling water are caused by splashing and dropping of water cascading over the internal filler of the cooling tower and into the basin and radiate from the louvered face. In this paper, the noise measurements and its frequency analysis are carried out for the locations facing the louvered side and near the fan stack referring the related code and standards in order to study the noise characteristics of the induced-draft cooling tower, especially for the buildings. As a result, it is found that for every doubling of distance from the noise source the noise level decreases by 2~4dBA in the near field with reflect surfaces and decreases by about 6dBA also in the far field without reflect surfaces. As a supplement to the noise measurements, a computer program with simple algorithm is developed in order to estimate the noise level at a distance from the cooling tower, so that the user could apply and modify it for the particular boundary conditions easily.

  • PDF

Comparative Study on the Film Cooling Effectiveness of 15° Angled Anti-Vortex Hole and 30-7-7 Fan-Shaped Hole Using PSP Technique (PSP를 이용한 15° 반와류 홀과 30-7-7 팬형상 홀의 막냉각 효율 비교 연구)

  • Kim, Ye Jee;Park, Soon Sang;Rhee, Dong Ho;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.13-18
    • /
    • 2016
  • The various film cooling hole shapes have been proposed for effective external cooling of gas turbine blade. In this study, the film cooling effectiveness by three different hole shapes (cylindrical hole, $15^{\circ}$ angle anti-vortex hole, 30-7-7 fan-shaped hole) were examined experimentally. Pressure Sensitive Paint (PSP) technique was used to measure the film cooling effectiveness. The coolant to mainstream density ratio was 1.0 and three blowing ratios of 0.5, 1.0, and 2.0 were considered. Results clearly showed that the effect of hole shape on the distribution of film cooling effectiveness. For the cylindrical hole case, the film cooling effectiveness decreased remarkably as the blowing ratio increased due to the jet lift off. Because of large hole exit area and low coolant momentum, the 30-7-7 fan-shaped hole case showed the highest film cooling effectiveness at all blowing ratio, followed by the anti-vortex hole case.

Optimal Design using Flow-structure Interaction Analysis Method of Engine Generator Cooling Fan (엔진발전기 냉각팬의 유동-구조 연성해석 기법을 이용한 최적설계)

  • Kim, Seung Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2020
  • In this study, the optimization design data was presented by analyzing the performance and durability of the cooling fan by one-way fluid-structure interaction analysis of the cooling fan shape used in the engine generator. For this purpose, a steady-state analysis was performed on the flow field inside the cooling fan, and the durability was analyzed by using the steady-state calculation results as input data for structural analysis. Six types were modeled for fluid analysis by changing the blade and sweep angle of the cooling fan, and the ratio of mass flow rate and torque was best in A type, but B type with relatively large mass flow rate was the best. It was judged to have flow performance. As a result of examining the structural analysis by setting the four blade thickness of the B type selected through the fluid analysis, it was judged that B Type-3 is the most suitable when considering the fatigue safety factor.