• Title/Summary/Keyword: cooled structure

Search Result 213, Processing Time 0.025 seconds

Exposure to elevated temperatures and cooled under different regimes-a study on polypropylene concrete

  • Yaragal, Subhash C.;Ramanjaneyulu, S.
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.21-34
    • /
    • 2016
  • Fire is one of the most destructive powers to which a building structure can be subjected, often exposing concrete elements to elevated temperatures. The relative properties of concrete after such an exposure are of significant importance in terms of the serviceability of buildings. Unraveling the heating history of concrete and different cooling regimes is important for forensic research or to determine whether a fire-exposed concrete structure and its components are still structurally sound or not. Assessment of fire-damaged concrete structures usually starts with visual observation of colour change, cracking and spalling. Thus, it is important to know the effect of elevated temperatures on strength retention properties of concrete. This study reports the effect of elevated temperature on the mechanical properties of the concrete specimen with polypropylene fibres and cooled differently under various regimes. In the heating cycle, the specimen were subjected to elevated temperatures ranging from $200^{\circ}C$ to $800^{\circ}C$, in steps of $200^{\circ}C$ with a retention period of 1 hour. Then they were cooled to room temperature differently. The cooling regimes studied include, furnace cooling, air cooling and sudden cooling. After exposure to elevated temperatures and cooled differently, the weight loss, residual compressive and split tensile strengths retention characteristics were studied. Test results indicated that weight and both compressive and tensile strengths significantly reduce, with an increase in temperature and are strongly dependent on cooling regimes adopted.

Ultrasonic ranging technique for obstacle monitoring above reactor core in prototype generation IV sodium-cooled fast reactor

  • Kim, Hoe-Woong;Joo, Young-Sang;Park, Sang-Jin;Kim, Sung-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.776-783
    • /
    • 2020
  • As the refueling of a sodium-cooled fast reactor is conducted by rotating part of the reactor head without opening it, the monitoring of existing obstacles that can disturb the rotation of the reactor head is one of the most important issues. This paper deals with the ultrasonic ranging technique that directly monitors the existence of possible obstacles located in a lateral gap between the upper internal structure and the reactor core in a prototype generation IV sodium-cooled fast reactor (PGSFR). A 10 m long plate-type ultrasonic waveguide sensor, whose feasibility has been successfully demonstrated through preliminary tests, was employed for the ultrasonic ranging technique. The design of the sensor's wave radiating section was modified to improve the radiation performance, and the radiated field was investigated through beam profile measurements. A test facility simulating the lower part of the upper internal structure and the upper part of the reactor core with the same shapes and sizes as those in the PGSFR was newly constructed. Several under-water performance tests were then carried out at room temperature to investigate the applicability of the developed ranging technique using the plate-type ultrasonic waveguide sensor with the actual geometry of the PGSFR's internal structures.

Characterization of alkali activated geopolymer mortar doped with MWCNT

  • Khater, H.M.;Abd el Gawaad, H.A.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.45-60
    • /
    • 2015
  • This paper aimed to investigate the effect of MWCNTs on properties of slag Geopolymeric mortar. Geopolymeric matrices containing different MWCNTs concentrations (0.0, 0.1, 0.2, 0.3 and 0.4 % by weight of the used binder) were synthesized. The Geopolymer mortar composed of aluminosilicate slag to sand (1:2), while the alumino silicate source binder composed of 50% air cooled slag and 50%water cooled slag both passing a sieve of $90{\mu}m$, while the sand passing a sieve of 1 ml. The materials prepared at water/binder ratios in a range of 0.34-0.39% depending on the added MWCNT, whereas the Gelenium Ace-30 superplasticizer used in the ratio of 1.4-2.2% from the total dry weight for better dispersion of MWCNT under sonication for 15 min. Alkaline activation of the Geopolymer mortar was carried by using of 6% NaOH. Curing was performed under temperature of $40^{\circ}C$ and 100% R.H. Results showed that the addition of MWCNTs enhanced the resulting amorphous geopolymer structure with marked decrease in the drying shrinkage as well as water absorption specially when using 0.1% MWCNT, while further increase in MWCNTs results in agglomeration in MWCNT within the matrix and so hinder the propagation of Geopolymerization reaction and negatively affect the formed geopolymer structure.

An Experimental Study on Sea Water Freezing Behavior Along Horizontal Cooled Cylinder With Bubbly Flow (기포를 동반한 유동장에서의 냉각원과 주위의 해수동결에 관한 실험적 연구)

  • Park, D.S.;Yoon, S.H.;Kim, M.H.;Lee, Y.H.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.825-832
    • /
    • 2001
  • This study was experimentally performed to investigate freezing behavior of sea water along horizontal cooled a circular tube with bubbly flow. The experiments were carried out for a variety of parameter, such as sea water velocity, air-bubble flow rate, and cooled-tube temperature. The shape of freezing layer, freezing rate and salinity of frozen layer were observed and measured. And the flow patterns around cooled tube were visualized using the PIV to analyze the relationship between the flow structure and the freezing characteristics. It was found that the experimental parameters gave a great influence on the freezing rate and the salinity of the frozen layer.

  • PDF

DESIGN STUDY OF AN IHX SUPPORT STRUCTURE FOR A POOL-TYPE SODIUM-COOLED FAST REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1323-1332
    • /
    • 2009
  • The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity.

A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility (수소생산시설에서의 수소폭발의 안전성평가 방법론 연구)

  • Jae, Moo-Sung;Jun, Gun-Hyo;Lee, Hyun-Woo;Lee, Won-Jae;Han, Seok-Jung
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In that case of hydrogen release, there lies a danger of explosion. However, from the point of thermal-hydraulics view, the long distance of them makes lower efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy are researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor are evaluated and classified by detonation volume and distance. Also based on standard safety criteria which is value of $1{\times}10^{-6}$, safety distance between the very high temperature gas cooled reactor and the hydrogen production facility is calculated.

Dynamics of Super-cooled state in Cholestric and Smectic Blue Phases

  • Yamamoto, Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1381-1382
    • /
    • 2008
  • Cholesteric Blue phase (ChBP) is constructed by the regular arrangement of the double helix, whereas the Smectic Blue phase (SmBP) has the inter-connected multi-lamellar structure. Orientation fluctuations of polymer stabilized ChBP and spontaneously super-cooled SmBP are discussed. Spatial topology of the defects play key role on the dynamic properties.

  • PDF

Design of air-cooled waste heat removal system with string type direct contact heat exchanger and investigation of oil film instability

  • Moon, Jangsik;Jeong, Yong Hoon;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.734-741
    • /
    • 2020
  • A new air-cooled waste heat removal system with a direct contact heat exchanger was designed for SMRs requiring 200 MW of waste heat removal. Conventional air-cooled systems use fin structure causing high thermal resistance; therefore, a large cooling tower is required. The new design replaces the fin structure with a vertical string type direct contact heat exchanger which has the most effective performance among tested heat exchangers in a previous study. The design results showed that the new system requires a cooling tower 50% smaller than that of the conventional system. However, droplet formation on a falling film along a string caused by Rayleigh-Plateau instability decreases heat removal performance of the new system. Analysis of Rayleigh-Plateau instability considering drag force on the falling film surface was developed. The analysis results showed that the instability can be prevented by providing thick string. The instability is prevented when the string radius exceeds the capillary length of liquid by a factor of 0.257 under stagnant air and 0.260 under 5 m/s air velocity.

Distortion and transformation of high tensile strength steel plate of 50kg/mm$^{2}$grade due to line heating (50kg/mm$^{2}$급 고장력 강판의 선상가열에 따른 판상변형과 재질변화)

  • 정남호;최병길;박종은
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1985
  • The line heating is a thermoplastic working technique which is used in bending work of steel plate and in correcting the distortion of welded structure. This method is considerably effective when the water-cooling is followed. In this study, an investigation was accomplished to find the effects on the change of material properties when the line heating was applied on the high tensile steel plate of 50kg/mm^2$ grade. Some steel plates were heated to various temperatures and then cooled with water or in the air. In this study, the author measured the angular distortion continuously during line heating to find out the relation between the bending efficiency and heating or water-cooling temperature. Furthermore, its material properties were examined by the V-notch Charpy impact test, the microscope observation and the Vickers hardness test. As results, the followings were clarified. (1) The amount of angular distortion increases as the heating temperature or the water-cooling temperature rises. (2) When the steel plate is heated between 700.deg. C and 900.deg. C, and then is water-cooled over 700.deg. C, some brittle structure is observed. But if the temperature of water-cooling is below 700.deg. C, no brittle one is found. (3) When the steel plate is heated over 800.deg. C and is cooled in the air, there is no unfavrable effect.

  • PDF

Numerical analysis of temperature fluctuation characteristics associated with thermal striping phenomena in the PGSFR

  • Jung, Yohan;Choi, Sun Rock;Hong, Jonggan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3928-3942
    • /
    • 2022
  • Thermal striping is a complex thermal-hydraulic phenomenon caused by fluid temperature fluctuations that can also cause high-cycle thermal fatigue to the structural wall of sodium-cooled fast reactors (SFRs). Numerical simulations using large-eddy simulation (LES) were performed to predict and evaluate the characteristics of the temperature fluctuations related to thermal striping in the upper internal structure (UIS) of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Specific monitoring points were established for the fluid region near the control rod driving mechanism (CRDM) guide tubes, CRDM guide tube walls, and UIS support plates, and the normalized mean and fluctuating temperatures were investigated at these points. It was found that the location of the maximum amplitude of the temperature fluctuations in the UIS was the lowest end of the inner wall of the CRDM guide tube, and the maximum value of the normalized fluctuating temperatures was 17.2%. The frequency of the maximum temperature fluctuation on the CRDM guide tube walls, which is an important factor in thermal striping, was also analyzed using the fast Fourier transform analysis. These results can be used for the structural integrity evaluation of the UIS in SFR.