The recent Neural Network technique has shown good performance in content generation such as image generation in addition to the conventional classification problem and clustering problem solving. In this study, we propose an image generation method using artificial neural network as a next generation content creation technique. The proposed artificial neural network model receives two images and combines them into a new image by taking color from one image and shape from the other image. This model is made up of Convolutional Neural Network, which has two encoders for extracting color and shape from images, and a decoder for taking all the values of each encoder and generating a combination image. The result of this work can be applied to various 2D image generation and modification works in game development process at low cost.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.280-282
/
2020
최근 사물인터넷(IoT), 자율주행과 같이 기계 간의 통신이 요구되는 서비스가 늘어감에 따라, 기계 임무 수행에 최적화된 데이터의 생성 및 압축에 대한 필요성이 증가하고 있다. 또한, 사물인터넷과 인공지능(AI)이 접목된 기술이 주목을 받으면서 딥러닝 모델에서 추출되는 특징(feature)을 디바이스에서 클라우드로 전송하는 방안에 관한 연구가 진행되고 있으며, 국제 표준화 기구인 MPEG에서는 '기계를 위한 부호화(Video Coding for Machine: VCM)'에 대한 표준 기술 개발을 진행 중이다. 딥러닝으로 특징을 추출하는 가장 대표적인 방법으로는 합성곱 신경망(Convolutional Neural Network: CNN)이 있으며, 오토인코더는 입력층과 출력층의 구조를 동일하게 하여 출력을 가능한 한 입력에 근사시키고 은닉층을 입력층보다 작게 구성하여 차원을 축소함으로써 데이터를 압축하는 딥러닝 기반 이미지 압축 방식이다. 이에 본 논문에서는 이러한 오토인코더의 성질을 이용하여 CNN 기반의 이미지 분류 네트워크의 합성곱 신경망으로부터 추출된 feature에 오토인코더를 적용하여 압축하는 방안을 제안한다.
As the presence of background noise in acoustic signal degrades the performance of speech or acoustic event recognition, it is still challenging to extract noise-robust acoustic features from noisy signal. In this paper, we propose a combined structure of Wasserstein Generative Adversarial Network (WGAN) and MultiTask AutoEncoder (MTAE) as deep learning architecture that integrates the strength of MTAE and WGAN respectively such that it estimates not only noise but also speech features from noisy acoustic source. The proposed MTAE-WGAN structure is used to estimate speech signal and the residual noise by employing a gradient penalty and a weight initialization method for Leaky Rectified Linear Unit (LReLU) and Parametric ReLU (PReLU). The proposed MTAE-WGAN structure with the adopted gradient penalty loss function enhances the speech features and subsequently achieve substantial Phoneme Error Rate (PER) improvements over the stand-alone Deep Denoising Autoencoder (DDAE), MTAE, Redundant Convolutional Encoder-Decoder (R-CED) and Recurrent MTAE (RMTAE) models for robust speech recognition.
Journal of the Korean Society of Marine Environment & Safety
/
v.27
no.1
/
pp.127-134
/
2021
In this study, an anomaly detection (AD) algorithm was implemented to detect the failure of a marine air compressor. A lab-scale experiment was designed to produce fault datasets (time-series electric current measurements) for 10 failure modes of the air compressor. The results demonstrated that the temporal pattern of the datasets showed periodicity with a different period, depending on the failure mode. An AD model with a convolutional autoencoder was developed and trained based on a normal operation dataset. The reconstruction error was used as the threshold for AD. The reconstruction error was noted to be dependent on the AD model and hyperparameter tuning. The AD model was applied to the synthetic dataset, which comprised both normal and abnormal conditions of the air compressor for validation. The AD model exhibited good detection performance on anomalies showing periodicity but poor performance on anomalies resulting from subtle load changes in the motor.
To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.
Video stabilization is one of the camera technologies that the importance is gradually increasing as the personal media market has recently become huge. For deep learning-based video stabilization, existing methods collect pairs of video datas before and after stabilization, but it takes a lot of time and effort to create synchronized datas. Recently, to solve this problem, unsupervised learning method using only unstable video data has been proposed. In this paper, we propose a network structure that learns the stabilized trajectory only with the unstable video image without the pair of unstable and stable video pair using the Convolutional Auto Encoder structure, one of the unsupervised learning methods. Optical flow data is used as network input and output, and optical flow data was mapped into grid units to simplify the network and minimize noise. In addition, to generate a stabilized trajectory with an unsupervised learning method, we define the loss function that smoothing the input optical flow data. And through comparison of the results, we confirmed that the network is learned as intended by the loss function.
Stress is a significant issue in modern society, often triggered by external or internal factors that are difficult to manage. When high stress persists over a long term, it can develop into a chronic condition, negatively impacting health and overall well-being. However, it is challenging for individuals experiencing chronic stress to recognize their condition, making early detection and management crucial. Using biosignals measured from wearable devices to detect stress could lead to more effective management. However, there are two main problems with using biosignals: first, manually extracting features from these signals can introduce bias, and second, the performance of classification models can vary greatly depending on the subject of the experiment. This paper proposes a model that reduces bias using convo utional autoencoders, which can represent the key features of data, and enhances generalizability by employing soft voting, a method of ensemble learning, to minimize performance variability. To verify the generalization performance of the model, we evaluate it using LOSO cross-validation method. The model proposed in this paper has demonstrated superior accuracy compared to previous studies using the WESAD dataset.
International Journal of Computer Science & Network Security
/
v.23
no.12
/
pp.151-160
/
2023
Breast cancer is the most dangerous and deadly form of cancer. Initial detection of breast cancer can significantly improve treatment effectiveness. The second most common cancer among Indian women in rural areas. Early detection of symptoms and signs is the most important technique to effectively treat breast cancer, as it enhances the odds of receiving an earlier, more specialist care. As a result, it has the possible to significantly improve survival odds by delaying or entirely eliminating cancer. Mammography is a high-resolution radiography technique that is an important factor in avoiding and diagnosing cancer at an early stage. Automatic segmentation of the breast part using Mammography pictures can help reduce the area available for cancer search while also saving time and effort compared to manual segmentation. Autoencoder-like convolutional and deconvolutional neural networks (CN-DCNN) were utilised in previous studies to automatically segment the breast area in Mammography pictures. We present Automatic SegmenAN, a unique end-to-end adversarial neural network for the job of medical image segmentation, in this paper. Because image segmentation necessitates extensive, pixel-level labelling, a standard GAN's discriminator's single scalar real/fake output may be inefficient in providing steady and appropriate gradient feedback to the networks. Instead of utilising a fully convolutional neural network as the segmentor, we suggested a new adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local attributes that collect long- and short-range spatial relations among pixels. We demonstrate that an Automatic SegmenAN perspective is more up to date and reliable for segmentation tasks than the state-of-the-art U-net segmentation technique.
Research into vision-based end-to-end autonomous driving systems utilizing deep learning and reinforcement learning has been steadily increasing. These systems typically encode continuous and high-dimensional vehicle states, such as location, velocity, orientation, and sensor data, into latent features, which are then decoded into a vehicular control policy. The complexity of urban driving environments necessitates the use of state representation learning through networks like Variational Autoencoders (VAEs) or Convolutional Neural Networks (CNNs). This paper analyzes the impact of different image state encoding methods on reinforcement learning performance in autonomous driving. Experiments were conducted in the CARLA simulator using RGB images and semantically segmented images captured by the vehicle's front camera. These images were encoded using VAE and Vision Transformer (ViT) networks. The study examines how these networks influence the agents' learning outcomes and experimentally demonstrates the role of each state representation technique in enhancing the learning efficiency and decision- making capabilities of autonomous driving systems.
Since the mitigation of fear of crime significantly enhances the consumptions in a city, studies focusing on urban safety analysis have received much attention as means of revitalizing the local economy. In addition, with the development of computer vision and machine learning technologies, efficient and automated analysis methods have been developed. Previous studies have used global features to predict the safety of cities, yet this method has limited ability in accurately predicting abstract information such as safety assessments. Therefore we used a Convolutional Context Neural Network (CCNN) that considered "context" as a decision criterion to accurately predict safety of cities. CCNN model is constructed by combining a stacked auto encoder with a fully connected network to find the context and use it in the CNN model to predict the score. We analyzed the RMSE and correlation of SVR, Alexnet, and Sharing models to compare with the performance of CCNN model. Our results indicate that our model has much better RMSE and Pearson/Spearman correlation coefficient.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.