• 제목/요약/키워드: convex clustering

검색결과 21건 처리시간 0.019초

Support Vector Machines 기반의 클러스터 결합 기법 (Support Vector Machine based Cluster Merging)

  • 최병인;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.369-374
    • /
    • 2004
  • Convex한 클러스터간의 최적의 거리와 Fuzzy Convex Clustering(FCC) 방법에 의한 효과적인 클러스터 결합 알고리즘을 제시하였다. 또한 두 convex한 클러스터간의 거리 측정 방법의 문제점인 정확성과 수행속도 개선하기 위하여 Support Vector Machines(SVM) 을 이용한 빠르고 정확한 거리 측정 방법을 제시하였다. 따라서 데이터의 부적절한 표현 없이 클러스터들의 개수를 크게 더 줄일 수 있었다. 본 논문에서는 제시한 알고리즘의 타당성을 위하여 여러 데이터에 대한 실험결과를 보여주므로서 제시한 알고리즘을 실제 영상 분할에 적용하여 다른 클러스터링 방법의 결과와 비교분석한다.

Support Vector Machines를 이용한 Convex 클러스터 결합 알고리즘 (A Convex Cluster Merging Algorithm using Support Vector Machines)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.267-270
    • /
    • 2002
  • 본 논문에서는 Support Vector Machines (SVM) 을 이용하여, 빠르고 정확한 두 convex한 클러스터 간의 거리 측정 방법을 제시한다 제시된 방법에서는, SVM에 의해서 생성되는 최적 다차원 평면이 두 클러스터간의 최소 거리를 계산하는데 사용된다. 또한, 본 논문에서는 이러한 두 클러스터 간의 최적의 거리를 사용하여, Fuzzy Convex Clustering (FCC) 방법 (1) 에 의해서 생성되는 Convex 클러스터들을 묶어주는 효과적인 클러스터 결합 알고리즘을 제시하였다. 그러므로, 데이터의 부적절한 표현을 유발하지 않고도 클러스터들의 개수를 좀 더 줄일 수 있었다. 제시한 방법의 타당성을 위하여 여러 실험 결과를 제시하였다

영화 데이터를 위한 쌍별 규합 접근방식의 군집화 기법 (Pairwise fusion approach to cluster analysis with applications to movie data)

  • 김희진;박세영
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.265-283
    • /
    • 2022
  • 사용자들의 영화정보를 기록한 MovieLens 데이터는 추천 시스템 연구에서 아이디어를 탐색하고 검증하는데 상당한 가치가 있는 데이터로, 기존 데이터 분할 및 군집화 알고리즘을 사용하여 사용자 평점 데이터를 기반으로 항목 집합을 분할하는 연구 등에 사용되는 데이터이다. 본 논문에서는 기존 연구에서 대표적으로 사용되었던 영화 평점 데이터와 영화 장르 데이터를 통해 사용자의 장르 선호도를 예측하여 선호도 패턴을 기반으로 사용자를 군집화(clustering)하고, 유의미한 정보를 얻는 연구를 진행하였다. MovieLens 데이터는 영화의 전체 개수에 비해 사용자별 평균 영화 평점 수가 낮아 결측 비율이 높다. 이러한 이유로 기존의 군집화 방법을 적용하는 데 한계가 존재한다. 본 논문에서는 MovieLens 데이터 특성에 모티브를 얻어 쌍별 규합 벌점함수(pairwise fused penalty)를 활용한 볼록 군집화(convex clustering) 기반의 방법을 제안한다. 특히 결측치 대체(missing imputation)도 동시에 해결하는 최적화 문제를 통해 기존의 군집화 분석과 차별화하였다. 군집화는 반복 알고리즘인 ADMM을 통해 제안하는 최적화 문제를 풀어 진행한다. 또한 시뮬레이션과 MovieLens 데이터 적용을 통해 제안하는 군집화 방법이 기존의 방법보다 노이즈 및 이상치에 상대적으로 민감하지 않은 것으로 보인다.

스펙트럴 클러스터링 - 요약 및 최근 연구동향 (Spectral clustering: summary and recent research issues)

  • 정상훈;배수현;김충락
    • 응용통계연구
    • /
    • 제33권2호
    • /
    • pp.115-122
    • /
    • 2020
  • K-평균 클러스터링은 매우 널리 사용되고 있으나 유사도가 구면체 또는 타원체로 정의되어 각 클러스터가 볼록 집합 형태인 자료에는 좋은 결과를 주지만 그렇지 않은 경우에는 매우 형편 없는 결과를 나타낸다. 스펙트럴 클러스터링은 K-평균 클러스터링의 단점을 잘 보완해 줄 뿐아니라 여러 형태의 자료나 고차원 자료 등에 대해서도 좋은 결과를 나타내서 최근 인공 신경망 모형에 많이 이용되고 있다. 하지만, 개선되어야 할 단점도 여전히 많다. 본 논문에서는 스펙트럴 클러스터링에 대해 알기 쉽게 소개하고, 클러스터 갯수의 추정, 척도모수의 추정, 고차원 자료의 차원 축소 등 스펙트럴 클러스터링에 대한 최근의 연구 동향을 소개한다.

Convex polytope을 이용한 퍼지 클러스터링 (Fuzzy clustering involving convex polytope)

  • 김재현;서일홍;이정훈
    • 전자공학회논문지C
    • /
    • 제34C권7호
    • /
    • pp.51-60
    • /
    • 1997
  • Prototype based methods are commonly used in cluster analysis and the results may be highly dependent on the prototype used. In this paper, we propose a fuzzy clustering method that involves adaptively expanding convex polytopes. Thus, the dependency on the use of prototypes can be eliminated. The proposed method makes it possible to effectively represent an arbitrarily distributed data set without a priori knowledge of the number of clusters in the data set. Specifically, nonlinear membership functions are utilized to determine whether a new cluster is created or which vertex of the cluster should be expanded. For this, the membership function of a new vertex is assigned according to not only a distance measure between an incoming pattern vector and a current vertex, but also the amount how much the current vertex has been modified. Therefore, cluster expansion can be only allowed for one cluster per incoming pattern. Several experimental results are given to show the validity of our mehtod.

  • PDF

단세포 RNA 시퀀싱 데이터를 위한 가중변수 스펙트럼 군집화 기법 (One-step spectral clustering of weighted variables on single-cell RNA-sequencing data)

  • 박민영;박세영
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.511-526
    • /
    • 2020
  • 단세포 RNA 시퀀싱 데이터(single-cell RNA-sequencing data, 이하 단세포 RNA 데이터)는 세포 조직으로부터 추출한 각 단세포 별 유전자의 신호를 기록한 데이터로, 세포 간의 이질성을 파악하는 것을 주요 목적으로 한다. 그러나 단세포 RNA 데이터는 샘플링 및 기술적인 한계로 인해 결측비율이 높고, 노이즈가 크다. 이러한 이유 때문에 기존의 군집화 방법을 적용하는 데에 한계가 존재한다. 본 논문에서는 단세포 RNA 데이터 분석에서 모티브를 얻어 스펙트럼 군집화(spectral clustering) 기반의 방법을 제안한다. 특히 유사도 행렬(similarity matrix) 계산에서 유전자 별로 가중치를 부여하여 기존의 단세포 데이터 분석 방법과 차별화하였다. 제안하는 군집화 방법은 유전자별 가중치를 부여함과 동시에 세포를 군집화한다. 군집화는 반복 알고리즘을 통해 제안하는 비볼록식(non-convex optimization)을 풀어 진행한다. 또한 실데이터 적용과 시뮬레이션을 통해 제안하는 군집화 방법이 기존의 방법보다 군집을 잘 구분하는 것을 보인다.

커널을 이용한 전역 클러스터링의 비선형화 (A Non-linear Variant of Global Clustering Using Kernel Methods)

  • 허경용;김성훈;우영운
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means(FCM)는 퍼지 집합을 응용한 간단하지만 효율적인 클러스터링 방법 중 하나이다. FCM은 여러 응용 분야에서 성공적으로 활용되어 왔지만, 초기화와 잡음에 민감하고 볼록한 형태의 클러스터들만 다룰 수 있는 문제점이 있다. 이 논문에서는 이러한 FCM의 문제점을 해결하기 위해 전역 클러스터링(global clustering) 기법과 커널 클러스터링(kernel clustering) 기법을 결합하여 새로운 비선형 클러스터링 기법인 커널 전역 FCM(kernel global fuzzy c-means, KG-FCM)을 제안한다. 전역 클러스터링은 클러스터링의 초기화를 위한 방법 중 하나로, 순차적으로 클러스터를 하나씩 추가함으로써 초기화에 민감한 FCM의 한계를 극복할 수 있도록 해준다. FCM의 잡음 민감성과 볼록한 클러스터들만 다룰 수 있는 한계를 극복하기 위한 방법은 여러 가지가 있으며 커널 클러스터링이 그 중 하나이다. 커널 클러스터링은 사용하는 커널을 바꿈으로써 쉽게 확장이 가능하므로 이 논문에서는 커널 클러스터링을 사용하였다. 두 방법을 결합함으로써 제안한 방법은 위에서 언급한 문제점들을 해결할 수 있으며, 이는 가상 및 실제 데이터를 이용한 실험 결과를 통해 확인할 수 있다.

준정부호 스펙트럼의 군집화 (Semidefinite Spectral Clustering)

  • 김재환;최승진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (A)
    • /
    • pp.892-894
    • /
    • 2005
  • Graph partitioning provides an important tool for data clustering, but is an NP-hard combinatorial optimization problem. Spectral clustering where the clustering is performed by the eigen-decomposition of an affinity matrix [1,2]. This is a popular way of solving the graph partitioning problem. On the other hand, semidefinite relaxation, is an alternative way of relaxing combinatorial optimization. issuing to a convex optimization[4]. In this paper we present a semidefinite programming (SDP) approach to graph equi-partitioning for clustering and then we use eigen-decomposition to obtain an optimal partition set. Therefore, the method is referred to as semidefinite spectral clustering (SSC). Numerical experiments with several artificial and real data sets, demonstrate the useful behavior of our SSC. compared to existing spectral clustering methods.

  • PDF

Improvement of Support Vector Clustering using Evolutionary Programming and Bootstrap

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.196-201
    • /
    • 2008
  • Statistical learning theory has three analytical tools which are support vector machine, support vector regression, and support vector clustering for classification, regression, and clustering respectively. In general, their performances are good because they are constructed by convex optimization. But, there are some problems in the methods. One of the problems is the subjective determination of the parameters for kernel function and regularization by the arts of researchers. Also, the results of the learning machines are depended on the selected parameters. In this paper, we propose an efficient method for objective determination of the parameters of support vector clustering which is the clustering method of statistical learning theory. Using evolutionary algorithm and bootstrap method, we select the parameters of kernel function and regularization constant objectively. To verify improved performances of proposed research, we compare our method with established learning algorithms using the data sets form ucr machine learning repository and synthetic data.

Semidefinite Programming을 통한 그래프의 동시 분할법 (K-Way Graph Partitioning: A Semidefinite Programming Approach)

  • Jaehwan, Kim;Seungjin, Choi;Sung-Yang, Bang
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.697-699
    • /
    • 2004
  • Despite many successful spectral clustering algorithm (based on the spectral decomposition of Laplacian(1) or stochastic matrix(2) ) there are several unsolved problems. Most spectral clustering Problems are based on the normalized of algorithm(3) . are close to the classical graph paritioning problem which is NP-hard problem. To get good solution in polynomial time. it needs to establish its convex form by using relaxation. In this paper, we apply a novel optimization technique. semidefinite programming(SDP). to the unsupervised clustering Problem. and present a new multiple Partitioning method. Experimental results confirm that the Proposed method improves the clustering performance. especially in the Problem of being mixed with non-compact clusters compared to the previous multiple spectral clustering methods.

  • PDF