• Title/Summary/Keyword: converter modeling

Search Result 337, Processing Time 0.026 seconds

Small Signal Modeling for the PWM Series Resonant Converter (PWM-SRC) (펄스-폭 변조방식의 직렬공진 컨버터의 소신호 모델링)

  • Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1441-1447
    • /
    • 1999
  • A discrete time domain modeling is presented for the pulse-width modulated series resonant converter (PWM-SRC) with a discontinuous current mode. This nonlinear system is linearized about its equilibrium state to obtain a linear discrete time model for the investigation of small signal performances such as the stability and transient response. The usefulness of this small signal model is verified through the dynamic simulation.

  • PDF

The characteristic of circuit of LC-type series and LLCC-Type parallel High frequency parallel resonant converter (LC 직렬형 및 LLCC 병렬형 고주파 공진형 컨버터의 회로 특성)

  • 차인수;박혜암
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.71-75
    • /
    • 1993
  • The Modeling analysis and design of a high frequency LC-type series and LLCC-type parallel resonant converter oprating in the continous conduction is presented. The state-plane diagram representation of the converter response gives and good insight into the converter operation. A set of characterisric frequency are plotted which design parameters can be obtained.

  • PDF

Small-Signal Modeling and Control of Three-Phase Bridge Boost Rectifiers under Non-Sinusoidal Conditions

  • Chang, Yuan;Jinjun, Liu;Xiaoyu, Wang;Zhaoan, Wang
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.757-771
    • /
    • 2009
  • This paper proposes a systematic approach to the modeling of the small-signal characteristics of three-phase bridge boost rectifiers under non-sinusoidal conditions. The main obstacle to the conventional synchronous d-q frame modeling approach is that it is unable to identify a steady-state under non-sinusoidal conditions. However, for most applications under non-sinusoidal conditions, the current loops of boost rectifiers are designed to have a bandwidth that is much higher than typical harmonics frequencies in order to achieve good current control for these harmonic components. Therefore a quasi-static method is applied to the proposed modeling approach. The converter small-signal characteristics developed from conventional synchronous frame modeling under different operating points are investigated and a worst case point is then located for the current loop design. Both qualitative and quantitative analyses are presented. It is observed that operating points influence the converter low frequency characteristics but hardly affect the dominant poles. The relationship between power stage parameters, system poles and zeroes is also presented which offers good support for the system design. Both the simulation and experimental results verified the analysis and proposed modeling approach. Finally, the practical case of a parallel active power filter is studied to present the modeling approach and the resultant regulator design procedure. The system performance further verifies the whole analysis.

Analysis of Shifting Transients with Emphasis on the Modeling of a Torque Converter (토크 컨버터의 모델링을 중심으로 한 변속과도 특성해석)

  • 임원식;박영일;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The torque converter, an important component of automatic transmissions, is a hydrodynamic device which has a great influence on transient characteristics of vehicle during shift. To predict the accurate driving performance in extremely transient state such as shifting process, a detailed analysis of the torque converter is required. In this study, one dimensional performance model of the torque converter based on the concept of mean flow path, was used to analyze the shifting transients and the exact values of equivalent parameters were determined from the experimental results by using BOX program. The dynamic modelings of the components of power transmission systems such as engines, planetary gear systems, clutches and one-way clutches, were carried out. To analyze the shifting transients of tracked vehicle, a simulation program was developed. In the modeling of power transmission systems, the stiffness of shafts was neglected and shifting control logic(TCU) was included. Using the developed simulation program, the driving conditions were simulated and the results of simulation were verified through the experiments on the dynamometer.

Analysis and Design of DC-DC Converter with Independent Dual Outputs (독립적인 이중 출력을 갖는 DC-DC 컨버터의 해석 및 설계)

  • Heo, Tae-Won;Park, Ji-Ho;Kim, Dong-Wan;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.171-178
    • /
    • 2005
  • The proposed dual-output DC-DC converter that bases on flyback converter can obtain two output voltage with non-isolated main-output and isolated sub-output at the same time using single-winding high frequency transformer. It can solve problems in multi-winding converter that use one main-switch, and also control quality of isolated sub-output voltage can be improved by additional sub-switch to the second. For analysis and design of the proposed converter system, converters are classified as operation mode from switching state and are become modeling by applying state space averaging method. Steady-state characteristics and dynamic characteristics are analyzed by DC component and perturbation component from state space averaging model. From experiment converter, validity of analysis and design for the propose converter system is confirm.

The Design of Controller and Modeling for Bi-directional DC-DC Converter including an Energy Storage System (에너지 저장장치를 포함하는 양방향 DC-DC 컨버터 모델링 및 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;Choy, Ick;An, Jin-Woong;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.235-244
    • /
    • 2012
  • This paper presents a design and simulation of bi-directional DC/DC boost converter for a fuel cell system. In this paper, we analyze the equivalent model of both a boost converter and a buck converter. Also we propose the controller of bi-directional DC-DC converter, which has buck mode of charging a capacitor and boost mode of discharging a capacitor. In order to design a controller, we draw bode plots of the control-to-output transfer function using specific parameters and incorporate proper compensator in a closed loop. As a result, it has increased PM(Phase Margin) for better dynamic performance. The proposed bi-directional DC-DC converter's 3pole-2zero compensation method has been verified with computer simulation and simulation results obtained demonstrates the validity of the proposed control scheme.

The control of Interleaved Multi-phase Boost Converter for Application of a Fuelcell Railway Vehicle (연료전지 철도차량 적용을 위한 인터리브드 다상 승압형 컨버터 제어)

  • Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1925-1930
    • /
    • 2016
  • Fuel cell power generation system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. This paper presents the control of interleaved multi-phase boost converter as the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. PSIM simulation program is to be used to implement the modeling of the electrical fuelcell as well as traction motor control with interleaved multi-phase boost converter. Comparing the input current ripple rate, two-phase interleaved boost converter is less than the boost converter. But the more multi-phase not less proportional to the ripple factor. we confirmed that the amplitude of the input current ripple rate of converter depend on duty ratio.

Analysis of A Fixed Frequency LCL-type DC-DC Converter Including the Effect of High-Frequency Transformer (변압기 영향을 포함한 고정주파수 LCL형 DC-DC 컨버터 해석)

  • Park, Sangeun;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.81-87
    • /
    • 2016
  • An LCL-type Isolated dc-dc converter operating for constant output voltage is analyzed, including the effect of a high frequency transformer using ac complex circuit approximation. Its solution is derived and is used to obtain the characteristics of the proposed converter. The analyses show through converter modeling, phasor diagram and gain comparison that inclusion of a high frequency transformer results in introduction of magnetizing inductance and leakage inductances at conventional LCL dc-dc converter with ideal transformer. The theoretical and simulation results are presented in case of the wide variations in input voltage and load current in detail. Analysis and simulation results observed that introduction of a transformer in the dc-dc converter had considerable effect on the performance, especially in the case of low output voltage and large load.

A Study on the Modeling and Control Method of PWM DC/DC Converter with Isolated two outputs

  • Jang Sang-Hyun;Yoo Ji-Yoon;Lee Dong-Yun;Choy Ick;Song Joong-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.291-294
    • /
    • 2001
  • This paper presents the circuit modeling and control methods of PWM DC/DC converter with isolated dual outputs. The dual output converter consists of a transformer with a single secondary winding and two switches. The proposed control algorithm is that required inductor current according to the loads is feed-forwarded to the PI current controller. The proposed control method has better response characteristics than conventional PI control method at load change.

  • PDF