• Title/Summary/Keyword: conversion loss

Search Result 737, Processing Time 0.027 seconds

DEVELOPMENT OF A SUPERCRITICAL CO2 BRAYTON ENERGY CONVERSION SYSTEM COUPLED WITH A SODIUM COOLED FAST REACTOR

  • Cha, Jae-Eun;Lee, Tae-Ho;Eoh, Jae-Hyuk;Seong, Sung-Hwan;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan;Kim, Tae-Woo;Suh, Kyun-Yul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1025-1044
    • /
    • 2009
  • Systematic research has been conducted by KAERI to develop a supercritical carbon dioxide Brayton cycle energy conversion system coupled with a sodium cooled fast reactor. For the development of the supercritical $CO_2$ Brayton cycle ECS, KAERI researched four major fields, separately. For the system development, computer codes were developed to design and analyze the supercritical $CO_2$ Brayton cycle ECS coupled with the KALIMER-600. Computer codes were developed to design and analyze the performance of the major components such as the turbomachinery and the high compactness PCHE heat exchanger. Three dimensional flow analysis was conducted to evaluate their performance. A new configuration for a PCHE heat exchanger was developed by using flow analysis, which showed a very small pressure loss compared with a previous PCHE while maintaining its heat transfer rate. Transient characteristics for the supercritical $CO_2$ Brayton cycle coupled with KALIMER-600 were also analyzed using the developed computer codes. A Na-$CO_2$ pressure boundary failure accident was analyzed with a computer code that included a developed model for the Na-$CO_2$ chemical reaction phenomena. The MMS-LMR code was developed to analyze the system transient and control logic. On the basis of the code, the system behavior was analyzed when a turbine load was changed. This paper contains the current research overview of the supercritical $CO_2$ Brayton cycle coupled to the KALIMER-600 as an alternative energy conversion system.

Rotor Loss Analysis in Permanent Magnet High-Speed Machine Using Coupled FEM and Analytical Method

  • Jang Seok-Myeong;Cho Han-Wook;Lee Sung-Ho;Yang Hyun-Sup
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.272-276
    • /
    • 2005
  • This paper deals with the method to calculate the rotor eddy current losses of permanent magnet high-speed machines considering the effects of time/space flux harmonics. The flux harmonics caused by the slot geometry in the stator is calculated from the time variation of the magnetic field distribution obtained by the magneto-static finite element analysis and double Fast Fourier Transform. And, using the analytical approach considering the multiple flux harmonics and the Poynting vector, the rotor losses is evaluated in each rotor composite. Using this method is simple and workable for any kind of stator slot shape for rotor loss analysis.

Optimization of a Flywheel PMSM with an External Rotor and a Slotless Stator

  • Holm S.R;Polinder H.;Ferreira J.A.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.215-223
    • /
    • 2005
  • An electrical machine for a high-speed flywheel for energy storage in large hybrid electric vehicles is described. Design choices for the machine are motivated: it is a radial-flux external-rotor permanent-magnet synchronous machine without slots in the stator iron and with a shielding cylinder. An analytical model of the machine is briefly introduced whereafter optimization of the machine is discussed. Three optimization criteria were chosen: (1) torque; (2) total stator losses and (3) induced eddy current loss on the rotor. The influence of the following optimization variables on these criteria is investigated: (1) permanent-magnet array; (2) winding distribution and (3) machine geometry. The paper shows that an analytical model of the machine is very useful in optimization.

The Application Method of DC Distribution in Microgrid (마이크로그리드의 직류 배전 적용 방안)

  • Lee, Soon-myung;Kim, Jeong-Uk
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.92-99
    • /
    • 2016
  • In this paper, After the Paris climate conference (COP21) in December 2015, 195 countries adopted the first-ever universal, legally binding global climate deal. As sustained increase of renewable energy and digital load, to implemented and operated Microgrid system's power distribution by DC power distribution. This reduce the loss of power conversion step occurring based on the AC power distribution system and eliminate the loss caused by the reactive power in power distribution system. For this reason, DC Microgrid will be extended to support evidence of National energy policies, Microgrid project status, DC distribution status, and to suggest process of DC power distribution in Microgrid construction project.

AC-DC buck converter topology of high power factor with soft switching mode (소프트 스위칭 모드에 의한 고역률의 AC-DC 강압형 컨버터 토폴로지)

  • 문상필;서기영;전중함;김영철;김준홍;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.417-422
    • /
    • 1997
  • This paper proposed that a AC-DC Converter topology of high power factor with soft switching mode operates with four chopper connecting a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer is included to confirm the validity of the analytical results. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in partial resonant circuit makes charging engergy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Multiple Buck-Chopper using Partial Resonant Switching

  • Mun Sang-Pil;Suh Ki-Young;Lee Hyun-Woo;Chun Jung-Ham
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.189-192
    • /
    • 2001
  • This paper proposed that an AC-DC converter system using multiple buck-chopper operates with four choppers connecting to a number of parallel circuits. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Implementation of Digital Control for Critical Conduction Mode Power Factor Correction Rectifier

  • Shin, Jong-Won;Baek, Jong-Bok;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.147-148
    • /
    • 2011
  • In this paper, implementation of digital control for critical conduction mode power factor correction (PFC) rectifier is presented. Critical conduction mode is widely used in medium and low power conversion application due to its minimized MOSFET turn-on loss and diode reverse-recovery problem. However, it needs additional zero current detection circuit and maximum frequency limit to properly turn the MOSFET on and avoid the excessive switching loss in light load operation. This paper explains the digital IC implementation and verifies its operation with 200-W prototype PFC rectifier.

  • PDF

Efficiency Increase and Input Power Decrease of Converted Prototype Pump Performance

  • Oshima, Masao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.205-212
    • /
    • 2016
  • The performance of a prototype pump converted from that of its model pump shows an increase in efficiency brought about by a decrease in friction loss. As the friction force working on impeller blades causes partial peripheral motion on the outlet flow from the impeller, the increase in the prototype's efficiency causes also a decrease in its input power. This paper discusses results of analyses on the behavior of the theoretical head or input power of a prototype pump. The equation of friction-drag coefficient for a flat plate was applied for the analysis of hydraulic loss in impeller blade passages. It was revealed that the friction-drag of a flat plate could be, to a certain degree, substituted for the friction drag of impeller blades, i.e. as a means for analyzing the relationship between a prototype pump's efficiency increase and input power decrease.

Dependence of the Gain Factor of the Reflective Polarizer on the Configuration of Optical Sheets

  • Lee, Byung-Woo;Yu, Mi-Yeon;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • The correlation between the optical performance of the reflective polarizer, which is a key optical component for the brightness enhancement of the liquid crystal display (LCD), and the configuration of optical sheets was investigated in a direct-lit CCFL (cold-cathode fluorescent lamp) backlight. The optical gain of the reflective polarizer, the polarization state of the light emitted from each film, and the loss factor for the polarization conversion process occurring in the lower part of the backlight were determined using a phenomenological approach for the polarization recycling process. The present study suggests that the correlation between the optical performance of the brightness enhancement films and the backlight configuration should be carefully considered in the optimization of the backlight structure.

Compensation of PV Module Current for Reduction of Mismatch Losses in PV Systems (태양광 시스템의 부정합 손실 저감을 위한 모듈 전류 보상 기법)

  • Ahn, Hee-Wook;Park, Gi-Yob
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • A current compensation method to reduce the mismatch loss in PV systems is proposed as a way to increase the power generation efficiency. A dc-dc converter is used to supply currents to irregular modules in a PV string and is powered from the string output. The converter's voltage conversion ratio is adjusted so that all the modules in the string are operated at the maximum power point. The power rating and size of the converter can be reduced since only the current difference between the regular and irregular module may be supplied. The compensated string shows very little voltage mismatch compared to other regular strings. The validity of the proposed method is verified through a simulation and experiments in a prototype PV system.