• Title/Summary/Keyword: conversational AI

Search Result 52, Processing Time 0.021 seconds

Understanding of Generative Artificial Intelligence Based on Textual Data and Discussion for Its Application in Science Education (텍스트 기반 생성형 인공지능의 이해와 과학교육에서의 활용에 대한 논의)

  • Hunkoog Jho
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.307-319
    • /
    • 2023
  • This study aims to explain the key concepts and principles of text-based generative artificial intelligence (AI) that has been receiving increasing interest and utilization, focusing on its application in science education. It also highlights the potential and limitations of utilizing generative AI in science education, providing insights for its implementation and research aspects. Recent advancements in generative AI, predominantly based on transformer models consisting of encoders and decoders, have shown remarkable progress through optimization of reinforcement learning and reward models using human feedback, as well as understanding context. Particularly, it can perform various functions such as writing, summarizing, keyword extraction, evaluation, and feedback based on the ability to understand various user questions and intents. It also offers practical utility in diagnosing learners and structuring educational content based on provided examples by educators. However, it is necessary to examine the concerns regarding the limitations of generative AI, including the potential for conveying inaccurate facts or knowledge, bias resulting from overconfidence, and uncertainties regarding its impact on user attitudes or emotions. Moreover, the responses provided by generative AI are probabilistic based on response data from many individuals, which raises concerns about limiting insightful and innovative thinking that may offer different perspectives or ideas. In light of these considerations, this study provides practical suggestions for the positive utilization of AI in science education.

An Efficient Matrix Multiplier Available in Multi-Head Attention and Feed-Forward Network of Transformer Algorithms (트랜스포머 알고리즘의 멀티 헤드 어텐션과 피드포워드 네트워크에서 활용 가능한 효율적인 행렬 곱셈기)

  • Seok-Woo Chang;Dong-Sun Kim
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2024
  • With the advancement of NLP(Natural Language Processing) models, conversational AI such as ChatGPT is becoming increasingly popular. To enhance processing speed and reduce power consumption, it is important to implement the Transformer algorithm, which forms the basis of the latest natural language processing models, in hardware. In particular, the multi-head attention and feed-forward network, which analyze the relationships between different words in a sentence through matrix multiplication, are the most computationally intensive core algorithms in the Transformer. In this paper, we propose a new variable systolic array based on the number of input words to enhance matrix multiplication speed. Quantization maintains Transformer accuracy, boosting memory efficiency and speed. For evaluation purposes, this paper verifies the clock cycles required in multi-head attention and feed-forward network and compares the performance with other multipliers.

Is ChatGPT an Ally or an Enemy? Its Impact on Society Based on a Systematic Literature Review

  • Juliana Basulo-Ribeiro;Leonor Teixeira
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.2
    • /
    • pp.79-95
    • /
    • 2024
  • The new AI based conversational chatbot, ChatGPT, launched in November 2022, is causing a stir. There are many opinions about this being a 'threat or a promise,' and thus it is important to understand what has been said about this tool and, based on the growing literature that has emerged on the subject, demystify its effective impact on society. To analyse this impact, a systematic literature review with the support of the preferred reporting items for systematic reviews and meta-analysis protocol was used. The data, scientific documents, were collected using the main scientific databases - SCOPUS and Web of Science - and the results were presented based on a bibliometric and thematic exploration of content. The main findings indicate that people are increasingly using this chatbot in more diverse areas. Therefore, this study contributes at the practical level, aiming to enlighten people in general - both in professional and personal life - about this tool and its impacts. Also, it contributes at the theoretical level, which involves expanding understanding and elucidation of the impacts of ChatGPT in different areas of study.

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

Artificial Intelligence for Assistance of Facial Expression Practice Using Emotion Classification (감정 분류를 이용한 표정 연습 보조 인공지능)

  • Dong-Kyu, Kim;So Hwa, Lee;Jae Hwan, Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1137-1144
    • /
    • 2022
  • In this study, an artificial intelligence(AI) was developed to help with facial expression practice in order to express emotions. The developed AI used multimodal inputs consisting of sentences and facial images for deep neural networks (DNNs). The DNNs calculated similarities between the emotions predicted by the sentences and the emotions predicted by facial images. The user practiced facial expressions based on the situation given by sentences, and the AI provided the user with numerical feedback based on the similarity between the emotion predicted by sentence and the emotion predicted by facial expression. ResNet34 structure was trained on FER2013 public data to predict emotions from facial images. To predict emotions in sentences, KoBERT model was trained in transfer learning manner using the conversational speech dataset for emotion classification opened to the public by AIHub. The DNN that predicts emotions from the facial images demonstrated 65% accuracy, which is comparable to human emotional classification ability. The DNN that predicts emotions from the sentences achieved 90% accuracy. The performance of the developed AI was evaluated through experiments with changing facial expressions in which an ordinary person was participated.

A Study on Performance Improvement of Recurrent Neural Networks Algorithm using Word Group Expansion Technique (단어그룹 확장 기법을 활용한 순환신경망 알고리즘 성능개선 연구)

  • Park, Dae Seung;Sung, Yeol Woo;Kim, Cheong Ghil
    • Journal of Industrial Convergence
    • /
    • v.20 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • Recently, with the development of artificial intelligence (AI) and deep learning, the importance of conversational artificial intelligence chatbots is being highlighted. In addition, chatbot research is being conducted in various fields. To build a chatbot, it is developed using an open source platform or a commercial platform for ease of development. These chatbot platforms mainly use RNN and application algorithms. The RNN algorithm has the advantages of fast learning speed, ease of monitoring and verification, and good inference performance. In this paper, a method for improving the inference performance of RNNs and applied algorithms was studied. The proposed method used the word group expansion learning technique of key words for each sentence when RNN and applied algorithm were applied. As a result of this study, the RNN, GRU, and LSTM three algorithms with a cyclic structure achieved a minimum of 0.37% and a maximum of 1.25% inference performance improvement. The research results obtained through this study can accelerate the adoption of artificial intelligence chatbots in related industries. In addition, it can contribute to utilizing various RNN application algorithms. In future research, it will be necessary to study the effect of various activation functions on the performance improvement of artificial neural network algorithms.

Greeting, Function, and Music: How Users Chat with Voice Assistants

  • Wang, Ji;Zhang, Han;Zhang, Cen;Xiao, Junjun;Lee, Seung Hee
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.61-74
    • /
    • 2020
  • Voice user interface has become a commercially viable and extensive interaction mechanism with the development of voice assistants. Despite the popularity of voice assistants, the academic community does not utterly understand about what, when, and how users chat with them. Chatting with a voice assistant is crucial as it defines how a user will seek the help of the assistant in the future. This study aims to cover the essence and construct of conversational AI, to develop a classification method to deal with user utterances, and, most importantly, to understand about what, when, and how Chinese users chat with voice assistants. We collected user utterances from the real conventional database of a commercial voice assistant, NetEase Sing in China. We also identified different utterance categories on the basis of previous studies and real usage conditions and annotated the utterances with 17 labels. Furthermore, we found that the three top reasons for the usage of voice assistants in China are the following: (1) greeting, (2) function, and (3) music. Chinese users like to interact with voice assistants at night from 7 PM to 10 PM, and they are polite toward the assistants. The whole percentage of negative feedback utterances is less than 6%, which is considerably low. These findings appear to be useful in voice interaction designs for intelligent hardware.

Determinants of Safety and Satisfaction with In-Vehicle Voice Interaction : With a Focus of Agent Persona and UX Components (자동차 음성인식 인터랙션의 안전감과 만족도 인식 영향 요인 : 에이전트 퍼소나와 사용자 경험 속성을 중심으로)

  • Kim, Ji-hyun;Lee, Ka-hyun;Choi, Jun-ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.573-585
    • /
    • 2018
  • Services for navigation and entertainment through AI-based voice user interface devices are becoming popular in the connected car system. Given the classification of VUI agent developers as IT companies and automakers, this study explores attributes of agent persona and user experience that impact the driver's perceived safety and satisfaction. Participants of a car simulator experiment performed entertainment and navigation tasks, and evaluated the perceived safety and satisfaction. Results of regression analysis showed that credibility of the agent developer, warmth and attractiveness of agent persona, and efficiency and care of the UX dimension showed significant impact on the perceived safety. The determinants of perceived satisfaction were unity of auto-agent makers and gender as predisposing factors, distance in the agent persona, and convenience, efficiency, ease of use, and care in the UX dimension. The contributions of this study lie in the discovery of the factors required for developing conversational VUI into the autonomous driving environment.

Effect of Anthropomorphism Level of Digital Human Banker Speech on User Experience: Focusing on Social Presence, Affinity, Trust, Perceived Intelligence, and Usefulness (디지털 휴먼 은행원 발화의 의인화 수준이 사용자 경험에 미치는 영향: 사회적 실재감, 친밀감, 신뢰도, 인지된 지능, 유용성을 중심으로)

  • Choi, Bomi;Jang, Seojin;Kang, Hyunmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.469-476
    • /
    • 2022
  • As the 3D modeling technology and conversational algorithm is developed, digital humans are being used in various fields, and also virtual bankers have begun to appear in banks, including major banks such as Shin-Han Bank and Nong-Hyup Bank. However, most of the research of digital human mainly focus on its appearance, and research on robot persona that should be considered in anthropomorphizing a robot is insufficient. In this study, an experiment was conducted to find out the user experience of three scenarios (student ID receipt, deposit and withdrawal account opening, leasehold loan consultation) in which the level of anthropomorphism of the speech strategy and the level of personal information use differed in the specific context of banking. As a result of the study, social presence and usefulness had an interactive effect on the scenario and the level of anthropomorphism. There was no interaction effect on intimacy, trustworthiness, and perceived intelligence, but a tendency could be confirmed.

Contextual Modeling in Context-Aware Conversation Systems

  • Quoc-Dai Luong Tran;Dinh-Hong Vu;Anh-Cuong Le;Ashwin Ittoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1396-1412
    • /
    • 2023
  • Conversation modeling is an important and challenging task in the field of natural language processing because it is a key component promoting the development of automated humanmachine conversation. Most recent research concerning conversation modeling focuses only on the current utterance (considered as the current question) to generate a response, and thus fails to capture the conversation's logic from its beginning. Some studies concatenate the current question with previous conversation sentences and use it as input for response generation. Another approach is to use an encoder to store all previous utterances. Each time a new question is encountered, the encoder is updated and used to generate the response. Our approach in this paper differs from previous studies in that we explicitly separate the encoding of the question from the encoding of its context. This results in different encoding models for the question and the context, capturing the specificity of each. In this way, we have access to the entire context when generating the response. To this end, we propose a deep neural network-based model, called the Context Model, to encode previous utterances' information and combine it with the current question. This approach satisfies the need for context information while keeping the different roles of the current question and its context separate while generating a response. We investigate two approaches for representing the context: Long short-term memory and Convolutional neural network. Experiments show that our Context Model outperforms a baseline model on both ConvAI2 Dataset and a collected dataset of conversational English.