• Title/Summary/Keyword: convergence approach

Search Result 2,223, Processing Time 0.029 seconds

File Signature's Automatic Calculation Algorithm Proposal for Digital Forensic

  • Jang, Eun-Jin;Shin, Seung-Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.118-123
    • /
    • 2021
  • Recently, digital crime is becoming more intelligent, and efficient digital forensic techniques are required to collect evidence for this. In the case of important files related to crime, a specific person may intentionally delete the file. In such a situation, data recovery is a very important procedure that can prove criminal charges. Although there are various methods to recover deleted files, we focuses on the recovery technique using HxD editor. When recovering a deleted file using the HxD editor, check the file structure and access the file data area through calculation. However, there is a possibility that errors such as arithmetic errors may occur when a file approach through calculation is used. Therefore, in this paper, we propose an algorithm that automatically calculates the header and footer of a file after checking the file signature in the root directory for efficient file recovery. If the algorithm proposed in this paper is used, it is expected that the error rate of arithmetic errors in the file recovery process can be reduced.

Quality Dynamics Using a Modified Satisfaction Index (수정된 고객만족지수를 이용한 품질속성의 동태성 분석)

  • Song, Hae-Geun;Kim, In-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • It is well known that the Kano model measures customer satisfaction and classifies quality attributes into must-be, attractive as well as one-dimensional. The main purpose of this study is to investigate the dynamics of e-learning quality attributes by applying the proposed method using Kano's satisfaction index in the rapidly changing online learning environment. For this, the current study examined 27 e-learning quality attributes and conducted a comparative study using Kano's results obtained in 2013 and 2020. The result shows that the dynamics of quality attributes suggested by Kano(2001) is confirmed in the case of e-learning. The proposed approach shows better results in terms of Kano's direct classification method, and has potential application areas such as IPA(Importance-Performance Analysis) in the area of risk assemement. Some suggestions for better understanding of the proposed SI-DI diagram are also included in this study.

Design of Robust Controller and Virtual Model of Remote Control System using LQG/LTR (LQG/LTR 기법을 적용한 원격제어시스템의 가상모델과 강건제어기의 설계)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.193-198
    • /
    • 2022
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

A New Analytical Series Solution with Convergence for Nonlinear Fractional Lienard's Equations with Caputo Fractional Derivative

  • Khalouta, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.583-593
    • /
    • 2022
  • Lienard's equations are important nonlinear differential equations with application in many areas of applied mathematics. In the present article, a new approach known as the modified fractional Taylor series method (MFTSM) is proposed to solve the nonlinear fractional Lienard equations with Caputo fractional derivatives, and the convergence of this method is established. Numerical examples are given to verify our theoretical results and to illustrate the accuracy and effectiveness of the method. The results obtained show the reliability and efficiency of the MFTSM, suggesting that it can be used to solve other types of nonlinear fractional differential equations that arise in modeling different physical problems.

Action-Based Audit with Relational Rules to Avatar Interactions for Metaverse Ethics

  • Bang, Junseong;Ahn, Sunghee
    • Smart Media Journal
    • /
    • v.11 no.6
    • /
    • pp.51-63
    • /
    • 2022
  • Metaverse provides a simulated environment where a large number of users can participate in various activities. In order for Metaverse to be sustainable, it is necessary to study ethics that can be applied to a Metaverse service platform. In this paper, Metaverse ethics and the rules for applying to the platform are explored. And, in order to judge the ethicality of avatar actions in social Metaverse, the identity, interaction, and relationship of an avatar are investigated. Then, an action-based audit approach to avatar interactions (e.g., dialogues, gestures, facial expressions) is introduced in two cases that an avatar enters a digital world and that an avatar requests the auditing to subjects, e.g., avatars controlled by human users, artificial intelligence (AI) avatars (e.g., as conversational bots), and virtual objects. Pseudocodes for performing the two cases in a system are presented and they are examined based on the description of the avatars' actions.

A Study on Fuzzy Logic Based Intelligent Control of Robot System to Improve the Work Efficiency for Smart Factory

  • Kim, Hee-Jin;Kim, Dong-Ho;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.645-658
    • /
    • 2021
  • In this paper, we propose a new approach to intelligent control based on fuzzy logic for work efficiency improvement of smart factory by the applicaion of ariticulated robot. The intelligent control that is applied to the working process by the joint of robotic manipulator is the main focus to improve a work efficiency for implimentation of smart factory in general manufacturing process. In this study, we propose a new method of a fuzzy model and then develop a nonlinear relationship between interaction forces and manipulator position using a fuzzy model. The reliability of the proposed control method is illustrated by simulation and experiments.

An Efficient Data Augmentation for 3D Medical Image Segmentation (3차원 의료 영상의 영역 분할을 위한 효율적인 데이터 보강 방법)

  • Park, Sangkun
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • Deep learning based methods achieve state-of-the-art accuracy, however, they typically rely on supervised training with large labeled datasets. It is known in many medical applications that labeling medical images requires significant expertise and much time, and typical hand-tuned approaches for data augmentation fail to capture the complex variations in such images. This paper proposes a 3D image augmentation method to overcome these difficulties. It allows us to enrich diversity of training data samples that is essential in medical image segmentation tasks, thus reducing the data overfitting problem caused by the fact the scale of medical image dataset is typically smaller. Our numerical experiments demonstrate that the proposed approach provides significant improvements over state-of-the-art methods for 3D medical image segmentation.

A Study on an Intelligent Motion Control of Mobile Robot Based on Iterative Learning for Smart Factory

  • Im, Oh-Duck;Kim, Hee-Jin;Kang, Da-Bi;Kim, Min-Chan;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.521-531
    • /
    • 2022
  • This study proposed a new approach to intelligent control of a mobile robot system by back properpagation based on multi-layer neural network. A experiment result is given in which some artificial assumptions about the linear and the angluar velocities of mobile robots from recent literature are dropped. In this study, we proposed a new thinique to impliment the real time conrol of he position and velocity of mobile robots. With the proposed control techinique, mobile robots can now globally follow any path such as a straight line, a circle and the path approaching th toe origin using proposed controller. Computer simulations are presented, which confirm the effectiveness of the proposed control algorithm. Moreover, practical experimental results concerning the real time control are reported with several real line constraints for mobile robots with two wheel driving.

Melanoma Classification Using Log-Gabor Filter and Ensemble of Deep Convolution Neural Networks

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1203-1211
    • /
    • 2022
  • Melanoma is a skin cancer that starts in pigment-producing cells (melanocytes). The death rates of skin cancer like melanoma can be reduced by early detection and diagnosis of diseases. It is common for doctors to spend a lot of time trying to distinguish between skin lesions and healthy cells because of their striking similarities. The detection of melanoma lesions can be made easier for doctors with the help of an automated classification system that uses deep learning. This study presents a new approach for melanoma classification based on an ensemble of deep convolution neural networks and a Log-Gabor filter. First, we create the Log-Gabor representation of the original image. Then, we input the Log-Gabor representation into a new ensemble of deep convolution neural networks. We evaluated the proposed method on the melanoma dataset collected at Yonsei University and Dongsan Clinic. Based on our numerical results, the proposed framework achieves more accuracy than other approaches.