• Title/Summary/Keyword: conventional oxide method

Search Result 321, Processing Time 0.031 seconds

The development of high brightness IPS mode for LCD Monitors

  • Kang, In-Byeong;Youn, Won-Gyun;Cho, So-Haeng;Song, In-Duk;Ahn, In-Ho;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.11-12
    • /
    • 2000
  • An 18.1" Thin Film Transistor Liquid Crystal Display (TFT LCD) monitor adopting high brightness In Plane Switching (IPS) technology was realized. While conventional IPS structure used a Chromium (Cr) and Molybdenum (Mo) for a drain electrode, Indium Tin Oxide (ITO) was proposed and verified in this paper. Black sticky micropeal spacers were introduced for the reduction of light scattering phenomena, which was observed at dark room with the conventional micropeal spacers. With the proposed method, more than 10 % aperture ratio was increased and the excellent image quality was obtained.

  • PDF

Resistive Switching Memory Devices Based on Layer-by-Layer Assembled-Superparamagnetic Nanocomposite Multilayers via Nucleophilic Substitution Reaction in Nonpolar Solvent

  • Kim, Yeong-Hun;Go, Yong-Min;Gu, Bon-Gi;Jo, Jin-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.1-243.1
    • /
    • 2011
  • We demonstrate a facile and robust layer-by-layer (LbL) assembly method for the fabrication of nonvolatile resistive switching memory (NRSM) devices based on superparamagnetic nanocomposite multilayers, which allows the highly enhanced magnetic and resistive switching memory properties as well as the dense and homogeneous adsorption of nanoparticles, via nucleophilic substitution reaction (NSR) in nonpolar solvent. Superparamagnetic iron oxide nanoparticles (MP) of about size 12 nm (or 7 nm) synthesized with oleic acid (OA) in nonpolar solvent could be converted into 2-bromo-2-methylpropionic acid (BMPA)-stabilized iron oxide nanoparticles (BMPA-MP) by stabilizer exchange without change of solvent polarity. In addition, bromo groups of BMPA-MP could be connected with highly branched amine groups of poly (amidoamine) dendrimer (PAMA) in ethanol by NSR of between bromo and amine groups. Based on these results, nanocomposite multilayers using LbL assembly could be fabricated in nonpolar solvent by NSR of between BMPA-MP and PAMA without any additional phase transfer of MP for conventional LbL assembly. These resulting superparamagnetic multilayers displayed highly improved magnetic and resistive switching memory properties in comparison with those of multilayers based on water-dispersible MP. Furthermore, NRSM devices, which were fabricated by LbL assembly method under atmospheric conditions, exhibited the outstanding performances such as long-term stability, fast switching speed and high ON/OFF ratio comparable to that of conventional inorganic NRSM devices produced by vacuum deposition.

  • PDF

Highly Reliable Solder ACFs FOB (Flex-on-Board) Interconnection Using Ultrasonic Bonding

  • Kim, Yoo-Sun;Zhang, Shuye;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • In this study, in order to improve the reliability of ACF interconnections, solder ACF joints were investigated interms of solder joint morphology and solder wetting areas, and evaluated the electrical properties of Flex-on-Board (FOB) interconncections. Solder ACF joints with the ultrasonic bonding method showed excellent solder wetting by broken solder oxide layers on solder surfaces compared with solder joints with remaining solder oxide layer bonded by the conventional thermo-compression (TC) bonding method. When higher target temperature was used, Sn58Bi solder joints showed concave shape due to lower degree of cure of resin at solder MP by higher heating rate. ACFs with epoxy resins and SAC305 solders showed lower degree of resin cure at solder MP due to the slow curing rate resulting in concave shaped solder joints. In terms of solder wetting area, solder ACFs with $25-32{\mu}m$ diameters and 30-40 wt% showed highest wetted solder areas. Solder ACF joints with the concave shape and the highest wetting area showed lower contact resistances and higher reliability in PCT results than conventional ACF joints. These results indicate that solder morphologies and wetting areas of solder ACF joints can be controlled by adjustment of bonding conditions and material properties of solder and polymer resin to improve reliability of ACF joints.

The Microwave Dielectric Properties of (1-x)Ba$Mg_{1/3}Ta_{2/3}O_{3}-xBa_Co_{1/3}Nb_{2/3})O_{3}(x=0.25~0.5)$ Ceramics ((1-X)Ba$Mg_{1/3}Ta_{2/3}O_{3}-xBa_Co_{1/3}Nb_{2/3})O_{3}(x=0.25~0.5)$세라믹스의 마이크로파 유전특성)

  • Hwang, Tae-Kwang;Kim, Kang;Lim, Sung-Soo;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.221-224
    • /
    • 2000
  • The microwave dielectric properties of Ba(Mg$_{1}$3/Ta$_{2}$3/)O$_3$-xBa(Co$_{1}$3/Nb$_{2}$3/)O$_3$[BMT-BCN] ceramics were investigated. The specimens were prepared by the conventional mixed oxide method. It was found that Ba(Mg$_{1}$3/Ta$_{2}$3/)O$_3$ and Ba(Co$_{1}$3/Nb$_{2}$3/)O$_3$ formed a solid solution with complex perovskite structure. Increasing the BCN content, dielectric constant was increased, but temperature coefficient of resonant frequency was decreased. In the range of x$\geq$0.4, dielectric constant was about 30. 0.55BMT-0.45BCN ceramics showed excellent microwave dielectric properties with $\varepsilon$$_{r}$=30.84, Q$\times$f$_{0}$=75,325[GHz] and $\tau$$_{f}$=-2.9015[ppm/$^{\circ}C$].X>].

  • PDF

Investigation of Effective Contact Resistance of ZTO-Based Thin Film Transistors

  • Gang, Yu-Jin;Han, Dong-Seok;Park, Jae-Hyeong;Mun, Dae-Yong;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.543-543
    • /
    • 2013
  • Thin-film transistors (TFTs) based on oxide semiconductors have been regarded as promising alternatives for conventional amorphous and polycrystalline silicon TFTs. Oxide TFTs have several advantages, such as low temperature processing, transparency and high field-effect mobility. Lots of oxide semiconductors for example ZnO, SnO2, In2O3, InZnO, ZnSnO, and InGaZnO etc. have been researched. Particularly, zinc-tin oxide (ZTO) is suitable for channel layer of oxide TFTs having a high mobility that Sn in ZTO can improve the carrier transport by overlapping orbital. However, some issues related to the ZTO TFT electrical performance still remain to be resolved, such as obtaining good electrical contact between source/drain (S/D) electrodes and active channel layer. In this study, the bottom-gate type ZTO TFTs with staggered structure were prepared. Thin films of ZTO (40 nm thick) were deposited by DC magnetron sputtering and performed at room temperature in an Ar atmosphere with an oxygen partial pressure of 10%. After annealing the thin films of ZTO at $400^{\circ}C$ or an hour, Cu, Mo, ITO and Ti electrodes were used for the S/D electrodes. Cu, Mo, ITO and Ti (200 nm thick) were also deposited by DC magnetron sputtering at room temperature. The channel layer and S/D electrodes were defined using a lift-off process which resulted in a fixed width W of 100 ${\mu}m$ and channel length L varied from 10 to 50 ${\mu}m$. The TFT source/drain series resistance, the intrinsic mobility (${\mu}i$), and intrinsic threshold voltage (Vi) were extracted by transmission line method (TLM) using a series of TFTs with different channel lengths. And the performances of ZTO TFTs were measured by using HP 4145B semiconductor analyzer. The results showed that the Cu S/D electrodes had a high intrinsic field effect mobility and a low effective contact resistance compared to other electrodes such as Mo, ITO and Ti.

  • PDF

Effect of NiO on Microstructure and Properties of PMN-PT-BT Ceramics Prepared by Mixed Oxide Method

  • Han, Kyoung-Ran;Jung, Jung-Woong;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.884-888
    • /
    • 2004
  • Effects of NiO were studied in aspects of dielectric properties and microstructure of $0.96(0.91Pb(Mg_{1/3}Nb_{2/3})O_3-0.09PbTiO_3)­0.04BaTiO_3$ (PMN-PT-BT, PBT). The PBT was prepared by a conventional mixed oxide method using $(MgCO_3)_4{\cdot}Mg(OH)_2$ instead of MgO through Lewis acid-base interaction. NiO was added in the range of 0.5 to $3.0\;wt\%$ as thermally decomposable $2NiCO_3{\cdot}3Ni(OH)_2$ and it seemed to enhance densification to a large extent below $1000^{\circ}C$. But all the systems gave rise to ceramics with almost same relative sintered density of 96% by sintering at $1000^{\circ}C$ for 2 h. But it turned out that the addition of NiO was detrimental to dielectric constant but beneficial to the loss of dielectric constant.

Measurement of Effective Refractive Index of Anodic Aluminum Oxide Using a Prism Coupler

  • Gong, Su-Hyun;Cho, Y.H.;Stolz, Arnaud;Gokarna, Anisha;Dogheche, Elhadj;Ryu, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.195-195
    • /
    • 2010
  • In recent years, Anodic aluminum oxide(AAO) has become popular and attractive materials. It can be easily fabricated and self-organized pore structures. It has been widely used as a biosensor membrane, photonic crystal for optical circuit and template for nanotube growth etc. In previous papers, the theory was developed that AAO shows anisotropic optical properties, since it has anisotropic structure with numerous cylindrical pores. It gives rise to the anisotropy of the refractive index called as birefringence. It can be used as conventional polarizing elements with high efficiency and low cost. Therefore, we would like to compare the theory and experimental results in this study. One method which can measure effective refractive index of thin film is the prism coupling technique. It can give accurate results fast and simply. Furthermore, we can also measure separately the refractive index with different polarization using polarization of the laser (TE mode and TM mode). We calculated the effective refractive index with effective medium approximations (EMAs) by pore size in the SEM image. EMAs are physical models that describe the macroscopic system as the homogeneous and typical method of all mean field theories.

  • PDF

Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining (탄소나노튜브와 그래핀 강화 하이브리드 알루미나 복합재료의 재료특성 및 마이크로방전가공 성능)

  • Sung, Jin-Woo;Kim, Nam-Kyung;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.3-9
    • /
    • 2013
  • Aluminum Oxide($Al_2O_3$) ceramics are excellent candidates for such applications due to their outstanding mechanical, thermal, and tribological properties. However, they are difficult to machine using conventional mechanical methods. Carbon fillers, such as carbon nanotubes(CNT) and graphene nanoplatelets(GNP)can be dispersed in a ceramic matrix to improve the mechanical and electrical properties. In this study, CNT and Graphene reinforced hybrid ceramic composites were fabricated using the spark plasma sintering method at a temperature of $1,500^{\circ}C$, pressure of 40 MPa, and soaking time of 10min. Besides this, the material properties such as microstructure, crystal structure, hardness, and electrical conductivity were analyzed using FE-SEM, XRD, Vickers, and the 4-point probe method. A micro machining test was carried out to compare the effects of the material properties and the machining performance for CNT and Graphene reinforced ceramic composites.

High Performance InGaZnO Thin Film Transistor by Atmospheric Pressure Ar Plasma Treatment (대기압 아르곤 플라즈마 처리를 통한 IGZO TFT의 전기적 특성 향상 연구)

  • Jeong, Byung-Jun;Jeong, Jun-Kyo;Park, Jung-Hyun;Kim, Yu-Jung;Lee, Hi-Deok;Choi, Ho-Suk;Lee, Ga-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.59-62
    • /
    • 2017
  • In this paper, atmospheric pressure plasma treatment was proposed for high performance indium gallium zinc oxide thin film transistor (IGZO TFT). RF Ar plasma treatment is performed at room temperature under atmospheric pressure as a simple and cost effective channel surface treatment method. The experimental results show that field effect mobility can be enhanced by $2.51cm^2/V{\cdot}s$ from $1.69cm^2/V{\cdot}s$ to $4.20cm^2/V{\cdot}s$ compared with a conventional device without plasma treatment. From X-ray photoelectron spectroscopy (XPS) analysis, the increase of oxygen vacancies and decrease of metal-oxide bonding are observed, which suggests that the suggested atmospheric Ar plasma treatment is a cost-effective useful process method to control the IGZO TFT performance.

  • PDF

Synthesis of CoO/Co(OH)2 Nanosheets Depending on Reaction Temperatures (반응 온도에 따른 CoO/Co(OH)2 나노시트의 합성)

  • Minjeong Lee;Gayoung Yoon;Gyeong Hee Ryu
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.222-228
    • /
    • 2023
  • Transition metal oxides formed by a single or heterogeneous combination of transition metal ions and oxygen ions have various types of crystal structures, which can be classified as layered structures and non-layered structures. With non-layered structures, it is difficult to realize a two-dimensional structure using conventional synthesis methods. In this study, we report the synthesis of cobalt oxide into wafer-scale nanosheets using a surfactant-assisted method. A monolayer of ionized surfactant at the water-air interface acts as a flexible template for direct cobalt oxide crystallization below. The nanosheets synthesized on the water surface can be easily transferred to an arbitrary substrate. In addition, the synthesizing morphological and crystal structures of the nanosheets were analyzed according to the reaction temperatures. The electrochemical properties of the synthesized nanosheets were also measured at each temperature. The nanosheets synthesized at 70 ℃ exhibited higher catalytic properties for the oxygen evolution reaction than those synthesized at other temperatures. This work suggests the possibility of changing material performance by adjusting synthesis temperature when synthesizing 2D nanomaterials using a wide range of functional oxides, resulting in improved physical properties.