DOI QR코드

DOI QR Code

Synthesis of CoO/Co(OH)2 Nanosheets Depending on Reaction Temperatures

반응 온도에 따른 CoO/Co(OH)2 나노시트의 합성

  • Minjeong Lee (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Gayoung Yoon (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Gyeong Hee Ryu (School of Materials Science and Engineering, Gyeongsang National University)
  • 이민정 (경상국립대학교 나노.신소재공학부 세라믹공학전공) ;
  • 윤가영 (경상국립대학교 나노.신소재공학부 세라믹공학전공) ;
  • 류경희 (경상국립대학교 나노.신소재공학부 세라믹공학전공)
  • Received : 2023.04.04
  • Accepted : 2023.05.15
  • Published : 2023.05.27

Abstract

Transition metal oxides formed by a single or heterogeneous combination of transition metal ions and oxygen ions have various types of crystal structures, which can be classified as layered structures and non-layered structures. With non-layered structures, it is difficult to realize a two-dimensional structure using conventional synthesis methods. In this study, we report the synthesis of cobalt oxide into wafer-scale nanosheets using a surfactant-assisted method. A monolayer of ionized surfactant at the water-air interface acts as a flexible template for direct cobalt oxide crystallization below. The nanosheets synthesized on the water surface can be easily transferred to an arbitrary substrate. In addition, the synthesizing morphological and crystal structures of the nanosheets were analyzed according to the reaction temperatures. The electrochemical properties of the synthesized nanosheets were also measured at each temperature. The nanosheets synthesized at 70 ℃ exhibited higher catalytic properties for the oxygen evolution reaction than those synthesized at other temperatures. This work suggests the possibility of changing material performance by adjusting synthesis temperature when synthesizing 2D nanomaterials using a wide range of functional oxides, resulting in improved physical properties.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1F1A1068161) and Regional Innovation Strategy (RIS) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003).

References

  1. W. S. Kang, J. Korean Inst. Surf. Eng., 49, 382 (2016).
  2. M. Ramrakhiani, Recent Res. Sci. Technol., 4, 14 (2012).
  3. F. Neuberger, J. Baranyai, T. Schmidt, T. Cottre, B. Kaiser, W. Jaegermann and R. Schafer, Z. Phys. Chem., 234, 847 (2020).
  4. R. Shokrani-Havigh and Y. Azizian-Kalandaragh, J. Optoelectron. Adv. Mater., 19, 283 (2017).
  5. M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith and S. W. Boettcher, J. Am. Chem. Soc., 137, 3638 (2015).
  6. K. Cysewska, M. Zajac, M. Lapinski, J. Karczewski, M. K. Rybarczyk, B. Kamecki and S. Molin, Energy Technol., 9, 2100688 (2021).
  7. K. Y. Jang, S. J. Ahn, J. H. Kwon, K. M. Nam and Y. H. Kim, J. Phys. Chem. C, 123, 10689 (2019).
  8. J. Chen, X. Wu and A. Selloni, Phys. Rev. B, 83, 245204 (2011).
  9. L. J. Cardenas-Flechas, J. J. Barba-Ortega and M. R. Joya, Ceramica, 68, 52 (2022).
  10. Y. Zhou, C. K. Dong, L. L. Han, J. Yang and X. W. Du, ACS Catal., 6, 6699 (2016).
  11. H. Feizi, R. Bagheri, Z. Song, J. R. Shen, S. I. Allakhverdiev and M. M. Najafpour, ACS Sustainable Chem. Eng., 7, 6093 (2019).
  12. S. Ojha, S. Paria, S. K. Karan, S. K. Si, A. Maitra, A. K. Das, L. Halder, A. Bera, A. De and B. B. Khatua, Nanoscale, 11, 22989 (2019).
  13. D. H. Kim, H. Kang, N.-J. Choi, K. H. Park and H. K. Lee, Sens. Actuators, B, 248, 987 (2017).
  14. D. Han, Y. Ji, F. Gu and Z. Wang, J. Colloid Interface Sci., 531, 320 (2018).
  15. C. C. Li, Q. H. Li, L. B. Chen and T. H. Wang, J. Mater. Chem., 21, 11867 (2011).
  16. M. Diab, M. Volokh, B. Moshofsky, I. Jen-La Plante, K. Flomin, E. Chockler and T. Mokari, Isr. J. Chem., 52, 1081 (2012).
  17. F. Piri, N. Shakour, M. Zandi and R. Karimian, J. Nanostruct., 1, 39 (2011).
  18. R. Hinterding and A. Feldhoff, Z. Phys. Chem., 233, 117 (2018).
  19. S. N. F. Moridon, M. N. I. Salehmin, K. Arifin, L. J. Minggu and M. B. Kassim, Appl. Sci., 11, 3031 (2011).
  20. Y. H. Jin, H. W. Shim and D. W. Kim, J. Korean Ceram. Soc., 48, 636 (2011).
  21. T. Maruyama and T. Nakai, Sol. Energy Mater., 23, 25 (1991).
  22. Y. Wang, Z. Zhang, Y. Mao and X. Wang, Energy Environ. Sci., 13, 3993 (2020).
  23. F. Wang, Y. Yu, X. Yin, P. Tiam and X. Wang, J. Mater. Chem., 5, 9060 (2017).
  24. G. H. Jeong, D. H. Nam and G. H. Ryu, Korean J. Mater. Res., 32, 153 (2022).
  25. X. Yin, Q. Chen, P. Tian, P. Zhang, Z. Zhang, P. M. Voyles and X. Wang, Chem. Mater., 30, 3308 (2018).
  26. Y. Wang, Y. Shi, Z. Zhang, C. Carlos, C. Zhang, K. Bhawnani, J. Li, J. Wang, P. M. Voyles, I. Szlufarska and X. Wang, Chem. Mater., 31, 9040 (2019).
  27. X.-C. Li, F.-S. She, D. Shen, C.-P. Liu, L.-H. Chen, Y. Li, Z. Deng, Z.-H. Chen and H.-E. Wang, RSC Adv., 8, 28623 (2018).
  28. F. Dionigi, J. Zhu, Z. Zeng, T. Merzdorf, H. Sarodnik, M. Gliech L. Pan, W. X. Li, J. Greeley and P. Strasser, Angew. Chem., Int. Ed., 60, 14446 (2021).
  29. S. M. Park, M. J. Jang, Y. S. Park, J. Lee, J.-Y. Jeong, J. Jung, M.-K. Choi, Y.-S. Noh, M.-H. Seo, H. J. Kim, J. Yang, Y. D. Kim and S. M. Choi, Korean J. Met. Mater., 58, 49 (2019).
  30. R. Farhat, J. Dhainy and L. I. Halaoui, ACS Catal., 10, 20 (2019).