• Title/Summary/Keyword: conventional fertilizer

Search Result 305, Processing Time 0.032 seconds

Nitrate Movement in The Root Zone of Corn Fields with Different Tillage Systems (경운에 따른 옥수수 근권에서의 질산태질소의 이동양상)

  • Kim, Won-Il;Jung, Goo-Bok;Lee, Jong-Sik;Kim, Jin-Ho;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2006
  • Movement of nitrate ($NO_3-N$) through a soil profile under no tillage (NT) or conventional tillage (CT) practices was monitored to identify the effects of tillage systems on nitrate leaching and retention in the soil profile at two commercial farms in central Illinois from 1993 through 1994. Anhydrous ammonia was applied in the 1993 growing seasons, while a mixture of urea and ammonium nitrate solution (URAN) was applied in three separate applications during the spring and early summer of the 1994 season. $NO_3-N$ of each plot through a 100 cm soil depth was found to be significantly high around $20mg\;kg^{-1}$ soil in the early 1993 season. However, downward movement of $NO_3-N$ occurred during the growing season. At the end of growing season, Flanagan and Ipava soils generally retained more $NO_3-N$ through the soil profile for both the CT plots and the NT plots than the Saybrook and Catlin soils. However, there was no significant difference between the nitrate content of the two soil types in each year. $NO_3-N$ content in NT fields were slightly higher than that observed in CT fields throughout the season before harvest. It means that NT plots may reduce the nitrate leaching to the ground water.

Corn (Zea mays L.) Root Distribution in Response to Variation in Soil Water Content (토양 수분함량에 따른 옥수수 뿌리 분포의 변화)

  • Kim, Won-Il;Jung, Goo-Bok;Huck, M.G.;Kim, Yong-Woong;Park, Ro-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • Root distribution was monitored in the root zone of corn fields on several soil series in central Illinois during three growing seasons in order to find the effect of soil series and tillage system on root growth. A minirhizotron technique was used to videotape each soil profile in weekly intervals to a depth of 75 cm under conventional tillage (CT) and no tillage (NT) systems of cultivation. Root distribution near soil surface generally increased during the early stages of the growing season, but declined as surface soil moisture was depleted in late summer. Even though root distribution was not significantly different between soil series in this experiment. differences in root distribution between soil series were associated with the increases in root-available water storage capacity. Root population in the top 30 cm of NT plots. where increased water infiltration rates and saturated flow of soil moisture into the subsoil, was generally higher than that of CT plots in Illinois corn fields. Foots appeared in the deeper layers later in the growing season, with root penetration into subsoil layers occurring as much as 2-3 weeks earlier on the NT plots than in CT plots. In conclusion, root distribution was significantly affected by the tillage systems, but not different by soil series.

Change of Soil and Water Temperature on the Different Topography and Irrigation Conditions of Paddy Land (지형(地形)과 관개조건(灌漑條件)에 따른 논의 수온(水溫) 및 지온변화(地溫變化))

  • Kim, Lee Yul;Jo, In Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.1
    • /
    • pp.12-17
    • /
    • 1989
  • Soil and water temperature were evaluated to relate rice growth to topographical chracteristics in paddy soils. Water temperature (WT) and so il temperature (ST) were measured under the various altitudes, slopes and irrigation methods. Temperature fluctuation and growth status in the same field were measured; 1. Air temperature (AT) and ST of 10cm soil depth were decreased with increasing altitude. Difference of its fluctuation in AT, WT and ST of 10cm soil depth in the lapse rate was 0.64, 0.84 and $0.82^{\circ}C$ per 100m elevation, respectively. 2. Maximum WT, in panicle initiation stage, was decreased slowly with increasing altitude whereas minimum WT fallen rapidly. It suggested that the lapse rate of WT was affected by minimum WT. 3. Source of irrigation water and irrigation method affected the WT. WT, ST and rice growth varied with the locations within the same field. 4. Pumping irrigation of artesian well resulted in more fluctuation of WT between irrigation intervals than did the conventional irrigation.

  • PDF

Influence of Diagnostic Fertilization and Subsoil Breaking on Soil physico-chemical Properties in Direct Seeding of Rice on Flooded Paddy Surface (벼 담수표면 직파재배시 진단시비와 심토파쇄가 토양이화학성 및 벼 생육에 미치는 영향)

  • Yoo, Chul-Hyun;Ryu, Jin-Hee;Yang, Chang-Hyu;Kim, Taek-Kyum;Kang, Seung-Weon;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.334-338
    • /
    • 2006
  • This study was conducted to evaluate the effect of improvement of soil physical properties such as deep plowing, subsoil breaking and diagnostic fertilization on the yield of rice and nitrogen-use efficiency in direct seeding on flooded paddy surface of rice. The effects of deep plowing, subsoil breaking and diagnostic application of N, P, K fertilizers, Latex coated urea(LCU), compost, silicate were investigated. The soil physical properties, such as bulk density, hardness and porosity were improved and the content of organic matter and available $SiO_2$ were also increased by deep plowing and subsoil breaking. The amount of $NH_4-N$ in soil was highly increased by diagnostic fertilization and deep plowing at 5th leaf stage. The nitrogen-use efficiency was the highest at the diagnostic application of LCU 70% applied as basal dressing with subsoil breaking. The yield of rice increased by 8% under the diagnostic application of LCU 70% applied as basal dressing with subsoil breaking compared with the conventional application.

Effects of No-tillage Rice Cover Crop Cropping Systems on Rice Root Growth (무경운 피복작물 작부체계가 벼 뿌리 생육에 미치는 영향)

  • Son, Daniel;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.375-379
    • /
    • 2011
  • This study was conducted to evaluate the effect of rice cover crop cropping systems on rice root growth in a rice field as affected by conventional tillage without rice straw or green manure crop treatment (CTFS, check plot), no-tillage without cover crops (NTNT), no-tillage amended with rape (NTRA), no-tillage amended with rye (NTRY), no-tillage amended with hairyvetch (NTHV), and no-tillage amended with Chinese milk vetch (NTCM). In 0-5 cm soil depth, dry weight of root in NTRS ($128g\;m^{-2}$) was significantly higher than in the other plots (p<0.05) at harvesting stage. In addition, content of active organic matter at 0-5 cm soil depth was $1,684g\;m^{-2}$ in NTCM, $1,309g\;m^{-2}$ in NTRA, $1,295g\;m^{-2}$ in NTRS, $1,072g\;m^{-2}$ in NTRY, $917g\;m^{-2}$ in NTHV, $434g\;m^{-2}$ CTFS, and $426g\;m^{-2}$ in NTNT treatment. In no-tillage rice cover crop cropping system, our findings suggest that NTRS and NTCM should be enhanced root growth and active organic matter in paddy field.

Physico-chemical properties of livestock manure compost using spent oyster mushroom (Pleurotus ostreatus) substrate (느타리 수확후배지를 이용한 가축분퇴비의 이화학적 특성)

  • Jae-Eun Jang;Sung-Hee Lim;Min-Woo Shin;Ji-Young Moon;Joo-Hee Nam;Gab-June Lim
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.118-125
    • /
    • 2023
  • We conducted an on-site application study at the livestock cooperative fertilizer plant to compare the composting period, temperature change, moisture content, and chemical properties between livestock manure compost using sawdust as a moisture regulator with those using spent oyster mushroom substrate. The composting period, moisture content, and fertilizer composition of compost containing spent oyster mushroom substrate did not differ from that of conventional compost mixed with sawdust after the first and second fermentation and post-maturation stages, it was suitable as a material for manufacturing livestock manure compost. The spent oyster mushroom substrate also lower the production cost of livestock manure compost by replacing the more expensive sawdust. The developed technology is expected to contribute towards the utilization of by-products of the oyster mushroom harvest while simultaneously producing high quality livestock manure compost.

Effect of Incorporation of Hairy Vetch on Nitrous Oxide Emission from Soils Cultivated with Maize (옥수수 재배지에서 헤어리베치의 토양환원이 아산화질소 배출에 미치는 영향)

  • Han, Hae Ri;Lee, Hyun Ho;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.237-244
    • /
    • 2019
  • BACKGROUND: Impact of incorporating hairy vetch into soil on mitigating nitrous oxide (N2O) emissions from maize field in South Korea has not been investigated, whereas impacts on soil properties and nutrients for crops have been investigated. Therefore, this study was conducted to examine N2O emission from upland soil incorporated with hairy vetch for one year in maize field. METHODS AND RESULTS: Hairy vetch was grown in an upland soil from November, 2017 to May, 2018 and incorporated into soil on May 25 of 2018. Control and conventional treatment (NPK) were included for comparison. Gas samples were collected weekly for a year to examine N2O emissions from the soil. Chemical nitrogen (N) fertilizer stimulated N2O emission in short term resulting in the greatest cumulative N2O emission in NPK (6.72 kg N2O ha-1) compared to the control (4.04 kg N2O ha-1) and hairy vetch-incorporated field (5.43 kg N2O ha-1), and the greatest yield of maize from NPK, because total N input was much greater by NPK (186 N kg ha-1) than by hairy vetch (81.6 N kg ha-1). CONCLUSION: Incorporation of hairy vetch reduced N2O emissions from the maize compared to the NPK-treated field. However, further research on improving crop productivity with incorporation of hairy vetch is needed.

Effects of Rhizosphere Microorganisms and Wood Vinegar Mixtures on Rice Growth and Soil Properties

  • Jeong, Kang Wook;Kim, Bo Sung;Ultra, Venecio U. Jr.;Chul, Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.355-365
    • /
    • 2015
  • Environment-friendly growth enhancers for rice are being promoted to reverse the negative impact of intensive chemical-based and conventional rice farming on yield sustainability and environmental problems. Several rhizosphere microorganisms and pyroligneous acids (PA) had demonstrated beneficial influence on growth, yield and grain quality of rice. Since most of the previous study had evaluated the effect of PGPR and PA on paddy rice singly, the effect of combined application of these on the growth and yield of paddy rice and on some soil chemical properties were determined. A four factorial pot experiment was conducted to evaluate the effect of PGPR, PA in combination with fertilizers and on different soil types. There were 54 treatment combinations including the control with three replications under complete randomized design. Plant growth parameters were evaluated using standard procedures during tillering and heading stages. Rice yield and some soil chemical properties were determined at harvest. Results showed that inoculation of Bacillus licheniformis and Fusarium fujikuroi enhanced plant growth by increasing the plant height which could be ascribe to its ability to promote IAA and GA production in plants. Inoculation of Rhizobium phaseoli enhanced chlorophyll content indicative to its ability to improve the N nutrition. However, these plant growth benefits during the vegetative stage were override by the fertilizer application effect especially during the maturity stage and grain yield. High fertilization rates on coarse-textured soil without nutrient loss resulted to high available nutrients and consequently high yield. Wood vinegar application however improved nutrient availability in soil which could be beneficial for improving soil quality. Further evaluation is necessary to fully assess the potential benefits that could be derived from inoculation of these organisms and wood vinegar application in different soil environment especially under different field conditions.

Challenges of Korean organic rice farming - practices, economic performances and implications from the case study of Jeonnam province

  • Seo, Gwi-Soo;Lee, Jin-Woo;Nicholas, Phillipa;Cho, Youn-Sup
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.284-284
    • /
    • 2009
  • EFA production systems have through necessity resulted in the development of innovative practices for weed, pest and diseases control, for example, using ducks and snails for weed control in paddy fields. These practices began to be introduced in the early 1990's and the techniques have become more popular and have been adapted to suit regional conditions. In this study, the production practices, productivity and economic performances of organic and non-chemical rice farming adopting ducks and snails for weed control were compared. In the production practices, Korean organic and non-chemical farming seem to have several concerns in terms of sustainability. It comprises lack of resistant variety use and rotational cropping system as well as high dependency upon external inputs such as organic fertilizer and farming materials for pest control. The production level of organic farming is approximately similar level but 20% higher income than non-chemical farming, while, when it was compared with conventional farming organic farming showed 20% lower productivity but 20% higher income. Organic farming shows 15% to 18% higher profits than non-chemical farming as the snail-using organic farming tends to have higher income and lower input costs than duck-using organic farming. This may encourage more farmers to convert to organic production using these techniques than simply non-chemical farming in the future. This organic conversion could be more promoted by policy intervention. However, it may result in increased supply and therefore decreased prices for organic rice in the long term unless further market demand occurs. Balanced policy measures considering production as well as marketing and consumption are urgently required for the sustainable development of organic farming.

  • PDF

Preliminary Studies for Efficient Treatment of Wastewater Milking Parlor in Livestock Farm (젖소 착유세정폐수의 효율적인 정화처리를 위한 기초연구)

  • Jang, Young Ho;Lee, Soo Moon;Kim, Woong Su;Kang, Jin Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.500-507
    • /
    • 2020
  • This study examined the wastewater at a livestock farm, and found that the dairy wastewater from the milking parlor had a lower concentration than the piggery wastewater, and that it was produced at a rate under 1.3 ㎥/day in a single farmhouse. The amount of dairy wastewater was determined based on the performance of the milking machine, the maintenance method of the milking parlor, and the amount of milk production allocated for each farmhouse, not by the area. The results confirmed that both dairy wastewater treatment processes, specifically those using Hanged Bio-Compactor (HBC) and Sequencing Batch Reactor (SBR), can fully satisfy the water quality standards of discharge. The dairy wastewater has a lower amount and concentration than piggery wastewater, meaning it is less valuable as liquid fertilizer, but it can be easily degraded using the conventional activated sludge process in a public sewage treatment plant. Therefore, discharging the dairy wastewater after individual treatment was expected to be a more reasonable method than consigning it to the centralized wastewater treatment plant. The effluent after the SBR process showed a lower degree of color than the HBC effluent, which was attributed to biological adsorption. In the case of the milking parlor in the livestock farm, the concentrations of the effluents obtained after HBC and SBR treatments both satisfied water quality standards for the discharge of public livestock wastewater treatment plants at 99% confidence intervals, and the concentrations of total nitrogen and phosphorous in untreated wastewater were even lower than the water quality standards of discharge. Therefore, we need to discuss strengthening the water quality standards to reduce environmental pollution.