DOI QR코드

DOI QR Code

Effect of Incorporation of Hairy Vetch on Nitrous Oxide Emission from Soils Cultivated with Maize

옥수수 재배지에서 헤어리베치의 토양환원이 아산화질소 배출에 미치는 영향

  • Han, Hae Ri (Department of Life Science and Environmental Biochemistry, College of Natural Resource and Life Sciences, Pusan National University) ;
  • Lee, Hyun Ho (Department of Life Science and Environmental Biochemistry, College of Natural Resource and Life Sciences, Pusan National University) ;
  • Hong, Chang Oh (Department of Life Science and Environmental Biochemistry, College of Natural Resource and Life Sciences, Pusan National University)
  • 한해리 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 이현호 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 홍창오 (부산대학교 생명자원과학대학 생명환경화학과)
  • Received : 2019.09.25
  • Accepted : 2019.10.25
  • Published : 2019.12.31

Abstract

BACKGROUND: Impact of incorporating hairy vetch into soil on mitigating nitrous oxide (N2O) emissions from maize field in South Korea has not been investigated, whereas impacts on soil properties and nutrients for crops have been investigated. Therefore, this study was conducted to examine N2O emission from upland soil incorporated with hairy vetch for one year in maize field. METHODS AND RESULTS: Hairy vetch was grown in an upland soil from November, 2017 to May, 2018 and incorporated into soil on May 25 of 2018. Control and conventional treatment (NPK) were included for comparison. Gas samples were collected weekly for a year to examine N2O emissions from the soil. Chemical nitrogen (N) fertilizer stimulated N2O emission in short term resulting in the greatest cumulative N2O emission in NPK (6.72 kg N2O ha-1) compared to the control (4.04 kg N2O ha-1) and hairy vetch-incorporated field (5.43 kg N2O ha-1), and the greatest yield of maize from NPK, because total N input was much greater by NPK (186 N kg ha-1) than by hairy vetch (81.6 N kg ha-1). CONCLUSION: Incorporation of hairy vetch reduced N2O emissions from the maize compared to the NPK-treated field. However, further research on improving crop productivity with incorporation of hairy vetch is needed.

Keywords

References

  1. Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J., & Vallejo. A. (2013). The potential of organic fertilizers and water management to reduce $N_2O$ emissions in Mediterranean climate cropping systems. A review, Agriculture, Ecosystems & Environment, 164, 32-52. https://doi.org/10.1016/j.agee.2012.09.006
  2. Al-Kaisi, M. M., & Yin, X. (2003). Effects of nitrogen rate, irrigation rate, and plant population on corn yield and water use efficiency. Agronomy journal, 95(6), 1475-1482. https://doi.org/10.2134/agronj2003.1475
  3. Allison, L. E., Bollen, W. B., & Moodie, C. D. (1965). Total carbon. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methods of soil analysis) . pp. 1346-1366, American Society of Agronomy, Soil Science Society of America.
  4. Alluvione, F., Bertora, C., Zavattaro, L., & Grignani. C. (2010). Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Science Society of America Journal, 74(2), 384-395. https://doi.org/10.2136/sssaj2009.0092
  5. Baruah, A., Bordoloi, N., & Baruah, K. K. (2016). Effect of organic amendments with varied CN ratios on grain productivity and nitrous oxide ($N_2O$) emission from wheat grown in alluvial soil. Australian Journal of Crop Science, 10(4), 460-469. https://doi.org/10.21475/ajcs.2016.10.04.p6970x
  6. Bouwman, A. F. (1998). Nitrogen oxides and tropical agriculture. Nature, 392, 866-867. https://doi.org/10.1038/31809
  7. Brady, N. C., & Raymond. R. W. (2010). Elements of the nature and properties of soils. p. 366, third ed., Pearson, USA.
  8. Bremner, J. M. (1965). Total nitrogen. In Methods of Soil Analysis PartII. (eds. Black, C. A.), pp. 1149-1178. America Society of Agronomy, Madison, WI, USA.
  9. Cates, R. L., & Keeney, D. R. (1987). Nitrous oxide production throughout the year from fertilized and manured maize fields1. Journal of Environmental Quality, 16(4), 443-447. https://doi.org/10.2134/jeq1987.00472425001600040026x
  10. Chadwick, D. R., Cardenas, L., Misselbrook, T. H., Smith, K. A., Rees, R. M., Watson, C. J., McGeough, K. L., Williams, J. R., Cloy, J. M., Thorman, R. E., & Dhanoa, M. S. (2014). Optimizing chamber methods for measuring nitrous oxide emissions from plot-based agricultural experiments. European Journal of Soil Science, 65(2), 295-307. https://doi.org/10.1111/ejss.12117
  11. Conen, F., & Smith, K. A. (1998). A re-examination of closed flux chamber methods for the measurement of trace gas emissions from soils to the atmosphere. European Journal of Soil Science, 49(4), 701-707. https://doi.org/10.1046/j.1365-2389.1998.4940701.x
  12. Cosentino, V. R. N., Fernandez, P. L., Figueiro Aureggi, S. A., & Taboada, M. A. (2012). $N_2O$ emissions from a cultivated Mollisol: optimal time of day for sampling and the role of soil temperature. Revista Brasileira de Ciencia do Solo, 36(6), 1814-1819. https://doi.org/10.1590/S0100-06832012000600015
  13. Di Paolo, E., & Rinaldi, M. (2008). Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Research, 105(3), 202-210. https://doi.org/10.1016/j.fcr.2007.10.004
  14. Eghball, B., & Power, J. F. (1999). Composted and noncomposted manure application to conventional and no-tillage systems: corn yield and nitrogen uptake. Agronomy Journal, 91(5), 819-825. https://doi.org/10.2134/agronj1999.915819x
  15. Forte, A., Fagnano, M., & Fierro, A. (2017). Potential role of compost and green manure amendment to mitigate soil GHGs emissions in Mediterranean drip irrigated maize production systems. Journal of Environmental Management, 192, 68-78. https://doi.org/10.1016/j.jenvman.2017.01.037
  16. Frimpong, K. A., & Baggs, E. M. (2010). Do combined applications of crop residues and inorganic fertilizer lower emission of $N_2O$ from soil?. Soil Use and Management, 26(4), 412-424. https://doi.org/10.1111/j.1475-2743.2010.00293.x
  17. Gabriel, J. L., & Quemada, M. (2011). Replacing bare fallow with cover crops in a maize cropping system: Yield, N uptake and fertiliser fate. European Journal of Agronomy, 34(3), 133-143. https://doi.org/10.1016/j.eja.2010.11.006
  18. Gomes, J., Bayer, C., de Souza Costa, F., de Cassia Piccolo, M., Zanatta, J. A., Vieira, F. C. B., & Six, J. (2009). Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil and Tillage Research, 106(1), 36-44. https://doi.org/10.1016/j.still.2009.10.001
  19. Goodroad, L. L., & Keeney, D. R. (1984). Nitrous oxide emissions from soils during thawing. Canadian Journal of Soil Science, 64(2), 187-194. https://doi.org/10.4141/cjss84-020
  20. Guardia, G., Abalos, D., Garcia-Marco, S., Quemada, M., Alonso-Ayuso, M., Cardenas, L. M., Dixon, E. R., & Vallejo, A. (2016). Integrated soil fertility management drives the effect of cover crops on GHG emissions in an irrigated field. Biogeoscience, 13, 5245-5257. https://doi.org/10.5194/bg-13-5245-2016
  21. Haque, M. M., Kim, S. Y., Ali, M. A., & Kim, P. J. (2015). Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant and Soil, 387(1-2), 251-264. https://doi.org/10.1007/s11104-014-2287-2
  22. Huang, Y., Zou, J., Zheng, X., Wang, Y., & Xu, X. (2004). Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology and Biochemistry, 36(6), 973-981. https://doi.org/10.1016/j.soilbio.2004.02.009
  23. Jeon, W. T., Seong, K. Y., Lee, J. K., Kim, M. T., & Cho, H. S. (2009). Effects of seeding rate on hairy vetch (Vicia villosa)-rye (Secale cereale) mixtures for green manure production in upland soil. Korean Journal of Crop Science, 54(3), 327-331.
  24. Jeon, W. T., Seong, K. Y., Kim, M. T., Oh, I. S., Choi, B. S., & Kang, U. G. (2011). Effect of biomass and N production by cultivation methods of leguminous and gramineae green manures on rice growth in central regions of Korea. Korean Journal of Soil Science and Fertilizer, 44(5), 853-858. https://doi.org/10.7745/KJSSF.2011.44.5.853
  25. Kim, S. Y., Lee, C. H., Gutierrez, J., & Kim, P. J. (2013). Contribution of winter cover crop amendments on global warming potential in rice paddy soil during cultivation. Plant and Soil, 366(1-2), 273-286. https://doi.org/10.1007/s11104-012-1403-4
  26. Klaus, B. B., Elizabeth, M. B., Michael, D., Ralf, K., & Sophie, Z. B. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls?. Biological Sciences, 368, 1621.
  27. Lee, S. I., Kim, G. Y., Choi, E. J., Lee, J. S., & Jeong, H. C. (2018). Nitrous oxide and carbon dioxide efflux of cropland soil during fallow season. Korean Journal of Agricultural and Forest Meteorology, 20(4), 386-396. https://doi.org/10.5532/KJAFM.2018.20.4.386
  28. Liang, B. C., & MacKenzie, A. F. (1994). Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization. Canadian Journal of Soil Science, 74(2), 235-240. https://doi.org/10.4141/cjss94-032
  29. Liebig, M. A., Franzluebbers, A. J., & Follett, R. F. (2012). Chapter 1 - Agriculture and Climate Change: Mitigation Opportunities and Adaptation Imperatives. (eds. Liebig, M. A., Franzluebbers, A. J., Follett Managing, R. F.), pp. 3-11, Acedemic Press, San Diego, CA.
  30. Linn, D. M., & Doran, J. W. (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils 1. Soil Science Society of America Journal, 48(6), 1267-1272. https://doi.org/10.2136/sssaj1984.03615995004800060013x
  31. Maag, M., & Vinther, F. P. (1996). Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology, 4(1), 5-14. https://doi.org/10.1016/0929-1393(96)00106-0
  32. Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide ($N_2O$): the dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949), 123-125. https://doi.org/10.1126/science.1176985
  33. Sanz-Cobena, A., Garcia-Marco, S., Quemada, M., Gabriel, J. L., Almendros, P., & Vallejo, A. (2014). Do cover crops enhance $N_2O$, $CO_2$ or $CH_4$ emissions from soil in Mediterranean arable systems?. Science of The Total Environment, 466-467, 164-174. https://doi.org/10.1016/j.scitotenv.2013.07.023
  34. Sanz-Cobena, A., Sanchez-Martin, L., Garcia-Torres, L., & Vallejo, A. (2012). Gaseous emissions of $N_2O$ and NO and $NO_3{^-}$ leaching from urea applied with urease and nitrification inhibitors to a maize (Zeamays) crop. Agriculture, Ecosystems & Environment, 149, 64-73. https://doi.org/10.1016/j.agee.2011.12.016
  35. Searle, P. L. (1984). The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst, 109(5), 549-568. https://doi.org/10.1039/an9840900549
  36. Seo, J. H., Lee, H. J., & Kim, S. J. (2000). Changes of green manure and nitrogen yield of hairy vetch according to seeding date in autumn. Korean Journal of Crop Science, 45(6), 400-404.
  37. Seo, Y. H., Kim, S. W., Choi, S. C., Kim, I. J., Kim, K. H., & Kim, G. Y. (2012). Effect of green manure crop and biochar on nitrous oxide emission from red pepper field. Korean Journal of Soil Science and Fertilizer, 45(4), 540-543. https://doi.org/10.7745/KJSSF.2012.45.4.540
  38. Sievers, T., & Cook, R. L. (2018). Aboveground and root decomposition of cereal rye and hairy vetch cover crops. Soil Science Society of America Journal, 82(1), 147-155. https://doi.org/10.2136/sssaj2017.05.0139
  39. Smith, P. (2004). Carbon sequestration in croplands: the potential in Europe and the global context. European Journal of Agronomy, 20(3), 229-236. https://doi.org/10.1016/j.eja.2003.08.002
  40. Soren, O. P., Kristiina, R., Alfred, P., Elisabeth, R., Laura, V., Sirwan, Y., Martti, E., Claudio, F., Eija, S., & Finn, P. V. (2006). Nitrous oxide emissions from organic and conventional crop rotations in five European countries. Agriculture, Ecosystems & Environment, 112(2-3), 200-206. https://doi.org/10.1016/j.agee.2005.08.021
  41. Tuomisto, H. L., Hodge, I. D., Riordan, P., & Macdonald, D. W. (2012). Does organic farming reduce environmental impacts?-A meta-analysis of European research. Journal of Environmental Management, 112, 309-320. https://doi.org/10.1016/j.jenvman.2012.08.018
  42. Upendra, M. S., William, B. S., Thecan, C. T. T., & Mark, A. L. (2012). Soil greenhouse gas emissions affected by irrigation, tillage, crop rotation, and nitrogen Fertilization. Journal of Environmental Quality, 41(6), 1174-1786.
  43. Wagner-Riddle, C., & Thurtell, G. W. (1998). Nitrous oxide emissions from agricultural fields during winter and spring thaw as affected by management practices. Nutirent Cycling in Agroecosystems, 52(2-3), 151-163. https://doi.org/10.1023/A:1009788411566
  44. Wolf, B. (1944). Determination of nitrate, nitrite, and Ammonium Nitrogen rapid photometric determination in soil and plant extracts. Industrial and Engineering Chemistry, 16(7), 446-447.