• Title/Summary/Keyword: conventional cone

Search Result 187, Processing Time 0.026 seconds

Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel (Dimethyl Ether와 디젤의 거시적 분무 특성 비교)

  • Yu, J.;Lee, J. K.;Bae, C. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.

PHOTOELASTIC ANALYSIS OF STRESSES INDUCED BY VARIOUS SUPERSTRUCTURES ON THE ENDOSTEAL IMPLANT (치과 임플랜트 보철 수복시 각 상부구조의 형태에 따라 발생되는 응력의 광탄성학적 분석)

  • Choi Young-Hee;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.679-686
    • /
    • 1993
  • The osseointegrated implant conducts the stress directly to the bone due to lack of cushoning effect of periodontal ligament. So, the design and material quality of superstructure plays an important role in resolution and diffusion of stress. Recently, the various superstructures have been developed to improve esthetics and resolve various complicated conditions. The purpose of this study was to evaluate the stress induced by various system on the osseointegrated implant using UCLA abutment, EsthetiCone abutment, Anatomic abutment as well as Branemark conventional abutment. The stress distribution was evaluated by the photoelastic method which can simultaneously observe all around stress distribution. The superstructures embedded in epoxy resin specimen were loaded at various angle with a force of 15Kg to analyse the stress distribution of the fixture. The results of this study were obtained as follows : 1. Under vertical loading, the large and broad stress was distributed below the fixture in all systems. 2. The fringe order of the stress was increased in proportion to tillting the specimen. The largest stress was shown in 25 angled degree tilting case. 3. The Branemark conventional abutment showed the lowest value, and EsthetiCone abutment, Anatomic abutment and UCLA abutment showed the stress value in accending order.

  • PDF

Accuracy of three-dimensional cephalograms generated using a biplanar imaging system

  • Park, Ha-Yeon;Lee, Jae-Seo;Cho, Jin-Hyoung;Hwang, Hyeon-Shik;Lee, Kyung-Min
    • The korean journal of orthodontics
    • /
    • v.48 no.5
    • /
    • pp.292-303
    • /
    • 2018
  • Objective: Biplanar imaging systems allow for simultaneous acquisition of lateral and frontal cephalograms. The purpose of this study was to compare measurements recorded on three-dimensional (3D) cephalograms constructed from two-dimensional conventional radiographs and biplanar radiographs generated using a new biplanar imaging system with those recorded on cone-beam computed tomography (CBCT)-generated cephalograms in order to evaluate the accuracy of the 3D cephalograms generated using the biplanar imaging system. Methods: Three sets of lateral and frontal radiographs of 15 human dry skulls with prominent facial asymmetry were obtained using conventional radiography, the biplanar imaging system, and CBCT. To minimize errors in the construction of 3D cephalograms, fiducial markers were attached to anatomical landmarks prior to the acquisition of radiographs. Using the 3D $Ceph^{TM}$ program, 3D cephalograms were constructed from the images obtained using the biplanar imaging system (3D $ceph_{biplanar}$), conventional radiography (3D $ceph_{conv}$), and CBCT (3D $ceph_{cbct}$). A total of 34 measurements were obtained compared among the three image sets using paired t-tests and Bland-Altman plotting. Results: There were no statistically significant differences between the 3D $ceph_{biplanar}$ and 3D $ceph_{cbct}$ measurements. In addition, with the exception of one measurement, there were no significant differences between the 3D $ceph_{cbct}$ and 3D $ceph_{conv}$ measurements. However, the values obtained from 3D $ceph_{conv}$ showed larger deviations than those obtained from 3D $ceph_{biplanar}$. Conclusions: The results of this study suggest that the new biplanar imaging system enables the construction of accurate 3D cephalograms and could be a useful alternative to conventional radiography.

Characteristics of a new cone beam computed tomography

  • Park, Chang-Seo;Kim, Kee-Deog;Park, Hyok;Jeong, Ho-Gul;Lee, Sang-Chul
    • Imaging Science in Dentistry
    • /
    • v.37 no.4
    • /
    • pp.205-209
    • /
    • 2007
  • Purpose: To determine the physical properties of a newly developed cone beam computed tomography (CBCT). Materials and Methods: We measured and compared the imaging properties for the indirect-type flat panel detector (FPD) of a new CBCT and the single detector array (SDA) of conventional helical CT (CHCT). Results: First, the modulation transfer function (MTF) of the CBCT were superior to those of the CHCT. Second, the noise power spectrum (NPS) of the CBCT were worse than those of the CHCT. Third, detective quantum efficiency (DQE) of the indirect-type CBCT were worse than those of the CHCT at lower spatial frequencies, but were better at higher spatial frequencies. Although the comparison of contrast-to-noise ratio (CNR) was estimated in the limited range of tube current, CNR of CBCT were worse than those of CHCT. Conclusion: This study shows that the indirect-type FPD system may be useful as a CBCT detector because of high resolution.

  • PDF

A Color Correction Method for High-Dynamic-Range Images Based on Human Visual Perception (인간 시각 인지에 기반을 둔 높은 동적폭을 갖는 영상 보정 방법)

  • Choi, Ho-Hyoung;Song, Jae-Wook;Jung, Na-Ra;Kang, Hyun-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1027-1038
    • /
    • 2015
  • For last several decades, the color correction methods have been proposed for HDR(high dynamic range) images. However, color distortion problems take place after correcting the colors such as halos, dominant color as well known. Accordingly, this article presents a novel approach in which the method consists of tone-mapping method and cone response function. In the proposed method, the tone mapping method is used to improve the contrast in the given HDR image based on chromatic and achromatic based on the CIEXYZ tristimulus value, expressed in c/m2. The cone response function is used to deal with mismatch between corrected image and displayed image as well as to estimate various human visual effects based on the CMCAT2000 color appearance model. The experimental results show that the proposed method yields better performance of color correction over the conventional method in subjective and quantitative quality, and color reproduction.

Current status of dental caries diagnosis using cone beam computed tomography

  • Park, Young-Seok;Ahn, Jin-Soo;Kwon, Ho-Beom;Lee, Seung-Pyo
    • Imaging Science in Dentistry
    • /
    • v.41 no.2
    • /
    • pp.43-51
    • /
    • 2011
  • Purpose : The purpose of this article is to review the current status of dental caries diagnosis using cone beam computed tomography (CBCT). Materials and Methods : An online PubMed search was performed to identify studies on caries research using CBCT. Results : Despite its usefulness, there were inherent limitations in the detection of caries lesions through conventional radiograph mainly due to the two-dimensional (2D) representation of caries lesions. Several efforts were made to investigate the three-dimensional (3D) image of lesion, only to gain little popularity. Recently, CBCT was introduced and has been used for diagnosis of caries in several reports. Some of them maintained the superiority of CBCT systems, however it is still under controversies. Conclusion : The CBCT systems are promising, however they should not be considered as a primary choice of caries diagnosis in everyday practice yet. Further studies under more standardized condition should be performed in the near future.

In-situ estimation of effective rooting depth for upland crops using hand penetration of cone probe (원추형 탐침봉을 이용한 밭작물 유효근권심 현장 진단)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.183-189
    • /
    • 2015
  • Plant root penetration through soil profile is restricted by compacted layer such as plow pan under conventional tillage. For detecting the compact layer, we made a graduated T-shape probe and measured compared between the depths with rapid change in feeling hardness of hand penetration using T-shape probe and with a rapid increase of penetrometer cone index. On upland crops, including red pepper, corn, soybean and cucumber, plow pan depth ranged from 10 cm to 25 cm depth. The effective rooting depth (ER) had significant correlation with the plow pan depth (PP) except soils with the shallow ground water and/or poorly drained soil. The regression equation was ER = 0.9*PP ($R^2=0.54^{**}$, N = 14) with the applicative PP range of 10-25 cm.

Estimation of Soft Ground Characteristics using the Piezo-Cone Penetration Tests(CPTu) on Honam High-Speed Railway Planning Line (호남고속철도 계획노선에서의 피에조콘 관입시험(CPTu)에 의한 연약지반 특성 평가)

  • Lee, Il-Wha;Kwon, Oh-Jung;Kwen, Jin-Su;Min, Kyoung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1796-1801
    • /
    • 2007
  • Piezocone penetration testing(CPTu) results such as cone resistance$(q_c)$, sleeve friction$(f_s)$, and pore pressure(u), have been carried out at 5 sites in Honam high-speed railway areas of Korea, in order to continuously estimate the characteristics of soil layers and the undrained shear strength$(S_u)$ in a soft ground. For the applications of the conventional CPTu results to undrained shear strength, the cone factors$(N_{kt})$ were deduced based on Field vane tests, and Monte-Carlo Simulation(MCS). Moreover the correlations of the undrained shear strength of CPTu by soil depths were compared and revised with the results of triaxial compression(UU test), field vane and Dilatometer tests(DMT). The depths of soft foundation at 5 sites in Honam high-speed railway areas were calculated based on the results of the various field tests in addition CPTu. The applicability of CPTu for a soft foundation criterion referred to the criteria of high-speed railway and related agencies in Korea was evaluated.

  • PDF

Adaptive Cone-Kernel Time-Frequency Distribution for Analyzing the Pipe-Thinning in the Secondary Systems of NPP (원전 이차계통 파이프 감육상태 분석를 위한 적응 콘-커널 시간-주파수 분포함수)

  • Kim, Jung-Taek;Lee, Sang-Jeong;Lee, Cheol-Kwon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.131-137
    • /
    • 2006
  • The secondary system of nuclear power plants consists of sophisticated piping systems operating in very aggressive erosion and corrosion environments, which make a piping system vulnerable to the wear and degradation due to the several chemical components and high flow rate (~10 m/sec) of the coolant. To monitor the wear and degradation on a pipe, the vibration signals are measured from the pipe with an accelerometer For analyzing the vibration signal the time-frequency analysis (TFA) is used, which is known to be effective for the analysis of time-varying or transient signals. To reduce the inteferences (cross-terms) due to the bilinear structure of the time-frequency distribution, an adaptive cone-kernel distribution (ACKD) is proposed. The cone length of ACKD to determine the characteristics of distribution is optimally selected through an adaptive algorithm using the normalized Shannon's entropy And the ACKD's are compared with the results of other analyses based on the Fourier Transform (FT) and other TFA's. The ACKD shows a better signature for the wear/degradation within a pipe and provides the additional information in relation to the time that any analysis based on the conventional FT can not provide.

Usefulness of Mobile Computed Tomography in Patients with Coronavirus Disease 2019 Pneumonia: A Case Series

  • Ji Young Rho;Kwon-Ha Yoon;Sooyeon Jeong;Jae-Hoon Lee;Chul Park;Hye-Won Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.8
    • /
    • pp.1018-1023
    • /
    • 2020
  • The coronavirus disease (COVID-19) outbreak has reached global pandemic status as announced by the World Health Organization, which currently recommends reverse transcription polymerase chain reaction (RT-PCR) as the standard diagnostic tool. However, although the RT-PCR test results may be found negative, there are cases that are found positive for COVID-19 pneumonia on computed tomography (CT) scan. CT is also useful in assessing the severity of COVID-19 pneumonia. When clinicians desire a CT scan of a patient with COVID-19 to monitor treatment response, a safe method for patient transport is necessary. To address the engagement of medical resources necessary to transport a patient with COVID-19, our institution has implemented the use of mobile CT. Therefore, we report two cases of COVID-19 pneumonia evaluated by using mobile cone-beam CT. Although mobile cone-beam CT had some limitations regarding its image quality such as scatter noise, motion and streak artifacts, and limited field of view compared with conventional multi-detector CT, both cases had acceptable image quality to establish the diagnosis of COVID-19 pneumonia. We report the usefulness of mobile cone-beam CT in patients with COVID-19 pneumonia.